This commit is contained in:
l.gabrysiak 2025-02-25 21:30:01 +01:00
parent 0b00a502db
commit f97eeea435
3 changed files with 124 additions and 63 deletions

View File

@ -2,7 +2,7 @@ USTAWA
z dnia 26 czerwca 1974 r.
Kodeks pracy1)
Kodeks pracy
(Dz. U. z 2023 r. poz. 1465 oraz z 2024 r. poz. 878, 1222, 1871 i 1965)
@ -11,8 +11,6 @@ obowiązuje od dnia 1 stycznia 1975 r.
historia od dnia 16 lutego 1998 r.
Preambuła (uchylona)
DZIAŁ PIERWSZY
Przepisy ogólne

179
hft.py
View File

@ -15,7 +15,7 @@ from huggingface_hub import login
# Konfiguracja
os.environ['TORCH_USE_CUDA_DSA'] = '1'
os.environ["TOKENIZERS_PARALLELISM"] = "false"
login(token="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")
login(token="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") # Zastąp swoim tokenem HF
class SourceMapper:
def __init__(self):
@ -34,66 +34,122 @@ class SourceMapper:
return self.idx_to_source.get(idx, "Unknown")
def load_file_catalog(catalog_path):
with open(catalog_path, 'r', encoding='utf-8') as file:
return json.load(file)
try:
with open(catalog_path, 'r', encoding='utf-8') as file:
return json.load(file)
except Exception as e:
print(f"Błąd wczytywania katalogu plików: {str(e)}")
return {}
def identify_legal_document(filename, file_catalog):
base_name = os.path.splitext(filename)[0]
return file_catalog.get(base_name, "Opracowanie własne")
def extract_text_from_file(file_path):
_, ext = os.path.splitext(file_path)
ext = ext.lower()
try:
_, ext = os.path.splitext(file_path)
ext = ext.lower()
if ext in ['.txt', '.md']:
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
elif ext == '.pdf':
text = ""
with open(file_path, 'rb') as file:
reader = PyPDF2.PdfReader(file)
for page in reader.pages:
text += page.extract_text()
return text
elif ext in ['.doc', '.docx']:
return docx2txt.process(file_path)
elif ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
return pytesseract.image_to_string(Image.open(file_path))
else:
if ext in ['.txt', '.md']:
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
elif ext == '.pdf':
text = ""
with open(file_path, 'rb') as file:
reader = PyPDF2.PdfReader(file)
for page in reader.pages:
text += page.extract_text()
return text
elif ext in ['.doc', '.docx']:
return docx2txt.process(file_path)
elif ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
return pytesseract.image_to_string(Image.open(file_path))
else:
print(f"Nieobsługiwany format pliku: {ext}")
return ""
except Exception as e:
print(f"Błąd ekstrakcji tekstu: {str(e)}")
return ""
def prepare_dataset(directory, catalog_path, source_mapper):
file_catalog = load_file_catalog(catalog_path)
data = []
print(f"\n{'='*50}\nDIAGNOSTYKA DANYCH\n{'='*50}")
if not os.path.exists(directory):
print(f"Brak katalogu: {directory}")
return data
for root, _, files in os.walk(directory):
if not files:
print(f"Brak plików w katalogu: {root}")
continue
for file in files:
file_path = os.path.join(root, file)
text = extract_text_from_file(file_path)
if not text:
print(f"\nPrzetwarzanie pliku: {file_path}")
try:
text = extract_text_from_file(file_path)
if not text.strip():
print("Pominięto - brak tekstu")
continue
print(f"Długość tekstu: {len(text)} znaków")
doc_type = identify_legal_document(file, file_catalog)
print(f"Rozpoznany typ dokumentu: {doc_type}")
if doc_type != "Opracowanie własne":
articles = re.split(r'(?i)(#+\s*art\.?\s*\d+[\.\s]?)', text)
print(f"Znaleziono {len(articles)} fragmentów")
if len(articles) < 2:
print("Brak artykułów w dokumencie prawnym!")
continue
for i in range(1, len(articles), 2):
article_number = re.sub(r'#+\s*', '', articles[i].strip(), flags=re.IGNORECASE)
article_content = articles[i+1].strip() if i+1 < len(articles) else ""
if not article_content:
print(f"Pominięto pusty artykuł: {article_number}")
continue
source = f"{doc_type}, {article_number}"
print(f"Dodano artykuł: {source}")
source_mapper.add_source(source)
data.append({
"text": f"{article_number} {article_content}",
"source_idx": source_mapper.get_idx(source)
})
else:
print("Traktowanie jako opracowanie własne")
clean_text = re.sub(r'\s+', ' ', text).strip()
chunks = [clean_text[i:i+512] for i in range(0, len(clean_text), 512)]
chunks = [c for c in chunks if c.strip()]
for chunk in chunks:
data.append({
"text": chunk,
"source_idx": -1
})
print(f"Dodano {len(chunks)} chunków")
except Exception as e:
print(f"Błąd podczas przetwarzania pliku: {str(e)}")
continue
doc_type = identify_legal_document(file, file_catalog)
print(f"\nPodsumowanie przygotowania danych:")
print(f"Łączna liczba przykładów: {len(data)}")
if data:
print("Przykładowy wpis:")
print(json.dumps(data[0], indent=2, ensure_ascii=False))
else:
print("BRAK DANYCH - sprawdź diagnostykę powyżej")
if doc_type != "Opracowanie własne":
articles = re.split(r'(#+\s*Art\.\s*\d+[\.\s]?)', text)
for i in range(1, len(articles), 2):
article_number = re.sub(r'#+\s*', '', articles[i].strip())
article_content = articles[i+1].strip() if i+1 < len(articles) else ""
source = f"{doc_type}, {article_number}"
source_mapper.add_source(source)
data.append({
"text": f"{article_number} {article_content}",
"source_idx": source_mapper.get_idx(source)
})
else:
chunks = [text[i:i+512] for i in range(0, len(text), 512)]
for chunk in chunks:
data.append({
"text": chunk,
"source_idx": -1
})
return data
class CustomModel(nn.Module):
@ -104,8 +160,8 @@ class CustomModel(nn.Module):
def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs):
if source_idx is not None:
source_idx = torch.clamp(source_idx, 0, self.source_embedding.num_embeddings-1)
source_embeds = self.source_embedding(source_idx).unsqueeze(1).expand(-1, input_ids.size(1), -1)
valid_indices = torch.clamp(source_idx, 0, self.source_embedding.num_embeddings-1)
source_embeds = self.source_embedding(valid_indices).unsqueeze(1).expand(-1, input_ids.size(1), -1)
inputs_embeds = self.base_model.get_input_embeddings()(input_ids) + source_embeds
return self.base_model(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels, **kwargs)
return self.base_model(input_ids=input_ids, attention_mask=attention_mask, labels=labels, **kwargs)
@ -130,6 +186,11 @@ def main():
# Przygotowanie danych
catalog_path = "file_catalog.json"
data = prepare_dataset("files", catalog_path, source_mapper)
if not data:
print("\nBrak danych do treningu! Sprawdź pliki w katalogu 'files' i diagnostykę powyżej.")
return
dataset = Dataset.from_list(data)
def tokenize_function(examples):
@ -141,13 +202,13 @@ def main():
return_tensors="pt"
)
return {
"input_ids": tokenized["input_ids"],
"attention_mask": tokenized["attention_mask"],
"labels": tokenized["input_ids"].clone(),
"input_ids": tokenized["input_ids"][0],
"attention_mask": tokenized["attention_mask"][0],
"labels": tokenized["input_ids"][0].clone(),
"source_idx": examples["source_idx"]
}
tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=8)
tokenized_dataset = dataset.map(tokenize_function, batched=False)
def custom_collate_fn(features):
return {
@ -166,16 +227,15 @@ def main():
# Trening
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=5,
num_train_epochs=3,
per_device_train_batch_size=2,
gradient_accumulation_steps=4,
learning_rate=3e-5,
learning_rate=2e-5,
fp16=torch.cuda.is_available(),
logging_steps=10,
save_strategy="steps",
save_steps=1000,
save_steps=500,
report_to="none",
weight_decay=0.01,
remove_unused_columns=False
)
@ -185,13 +245,16 @@ def main():
train_dataset=tokenized_dataset,
data_collator=custom_collate_fn
)
print("Rozpoczęcie treningu...")
print("\nRozpoczęcie treningu...")
trainer.train()
# Testowanie
def generate_answer(question):
model.eval()
prompt = f"[PYTANIE PRAWNE] {question}"
inputs = tokenizer(
f"[PYTANIE PRAWNE] {question}",
prompt,
return_tensors="pt",
truncation=True,
max_length=512
@ -210,13 +273,13 @@ def main():
)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
answer = answer.split("[PYTANIE PRAWNE]")[-1].strip()
answer = answer.replace(prompt, "").strip()
sources = set()
for match in re.finditer(r'Art\.\s*\d+', answer):
for match in re.finditer(r'(?i)art\.?\s*\d+', answer):
article_ref = match.group(0).strip()
for idx, source in source_mapper.idx_to_source.items():
if article_ref in source:
for source in source_mapper.idx_to_source.values():
if article_ref.lower() in source.lower():
sources.add(source)
return {