This commit is contained in:
l.gabrysiak 2025-02-25 16:07:46 +01:00
parent ed44484e37
commit fef5717c2b
1 changed files with 20 additions and 15 deletions

35
hft.py
View File

@ -109,22 +109,26 @@ def custom_collate_fn(batch):
input_ids = torch.stack([torch.tensor(b["input_ids"]) for b in batch])
attention_mask = torch.stack([torch.tensor(b["attention_mask"]) for b in batch])
labels = torch.stack([torch.tensor(b["labels"]) for b in batch])
# Dodajemy domyślne source_idx, jeśli nie istnieje
source_idx = torch.tensor([b.get("source_idx", -1) for b in batch], dtype=torch.long)
print("source_idx shape:", source_idx.shape) # Debugowanie
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels, "source_idx": source_idx}
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": labels,
"source_idx": source_idx
}
class CustomModel(AutoModelForCausalLM):
def __init__(self, config):
super().__init__(config)
self.source_embedding = nn.Embedding(
num_embeddings=1000, # Maksymalna liczba unikalnych źródeł
num_embeddings=1000,
embedding_dim=config.hidden_size,
padding_idx=-1
)
def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs):
def forward(self, input_ids=None, attention_mask=None, labels=None, **kwargs):
source_idx = kwargs.pop('source_idx', None) # Pobierz i usuń source_idx z kwargs
outputs = super().forward(
input_ids=input_ids,
attention_mask=attention_mask,
@ -133,24 +137,25 @@ class CustomModel(AutoModelForCausalLM):
)
if source_idx is not None:
# Tutaj dodaj logikę obsługi source_idx
pass
source_idx = source_idx.to(outputs.logits.device) # Ensure same device
source_embeds = self.source_embedding(source_idx).unsqueeze(1)
outputs.logits += source_embeds
return outputs
class CustomTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
labels = inputs.pop("labels")
source_idx = inputs.pop("source_idx", None)
outputs = model(**inputs, labels=labels, source_idx=source_idx if source_idx is not None else None)
source_idx = inputs.pop("source_idx")
outputs = model(**inputs, labels=labels, source_idx=source_idx)
return (outputs.loss, outputs) if return_outputs else outputs.loss
# Inicjalizacja komponentów
source_mapper = SourceMapper()
model_name = "crumb/nano-mistral" #"google/gemma-2-2b"
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Przygotowanie danych
catalog_path = "file_catalog.json"
@ -161,7 +166,7 @@ tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=8)
# Inicjalizacja modelu
config = AutoModelForCausalLM.from_pretrained(model_name).config
model = CustomModel.from_pretrained(model_name, config=config)
model.to("cpu")
model.to("cuda" if torch.cuda.is_available() else "cpu")
# Konfiguracja treningu
training_args = TrainingArguments(