zmiany
This commit is contained in:
parent
ed44484e37
commit
fef5717c2b
35
hft.py
35
hft.py
|
|
@ -109,22 +109,26 @@ def custom_collate_fn(batch):
|
|||
input_ids = torch.stack([torch.tensor(b["input_ids"]) for b in batch])
|
||||
attention_mask = torch.stack([torch.tensor(b["attention_mask"]) for b in batch])
|
||||
labels = torch.stack([torch.tensor(b["labels"]) for b in batch])
|
||||
|
||||
# Dodajemy domyślne source_idx, jeśli nie istnieje
|
||||
source_idx = torch.tensor([b.get("source_idx", -1) for b in batch], dtype=torch.long)
|
||||
print("source_idx shape:", source_idx.shape) # Debugowanie
|
||||
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels, "source_idx": source_idx}
|
||||
|
||||
return {
|
||||
"input_ids": input_ids,
|
||||
"attention_mask": attention_mask,
|
||||
"labels": labels,
|
||||
"source_idx": source_idx
|
||||
}
|
||||
|
||||
class CustomModel(AutoModelForCausalLM):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.source_embedding = nn.Embedding(
|
||||
num_embeddings=1000, # Maksymalna liczba unikalnych źródeł
|
||||
num_embeddings=1000,
|
||||
embedding_dim=config.hidden_size,
|
||||
padding_idx=-1
|
||||
)
|
||||
|
||||
def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs):
|
||||
def forward(self, input_ids=None, attention_mask=None, labels=None, **kwargs):
|
||||
source_idx = kwargs.pop('source_idx', None) # Pobierz i usuń source_idx z kwargs
|
||||
outputs = super().forward(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
|
|
@ -133,24 +137,25 @@ class CustomModel(AutoModelForCausalLM):
|
|||
)
|
||||
|
||||
if source_idx is not None:
|
||||
# Tutaj dodaj logikę obsługi source_idx
|
||||
pass
|
||||
|
||||
source_idx = source_idx.to(outputs.logits.device) # Ensure same device
|
||||
source_embeds = self.source_embedding(source_idx).unsqueeze(1)
|
||||
outputs.logits += source_embeds
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
class CustomTrainer(Trainer):
|
||||
def compute_loss(self, model, inputs, return_outputs=False):
|
||||
def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
|
||||
labels = inputs.pop("labels")
|
||||
source_idx = inputs.pop("source_idx", None)
|
||||
outputs = model(**inputs, labels=labels, source_idx=source_idx if source_idx is not None else None)
|
||||
source_idx = inputs.pop("source_idx")
|
||||
outputs = model(**inputs, labels=labels, source_idx=source_idx)
|
||||
return (outputs.loss, outputs) if return_outputs else outputs.loss
|
||||
|
||||
# Inicjalizacja komponentów
|
||||
source_mapper = SourceMapper()
|
||||
model_name = "crumb/nano-mistral" #"google/gemma-2-2b"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
if tokenizer.pad_token is None:
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
|
||||
# Przygotowanie danych
|
||||
catalog_path = "file_catalog.json"
|
||||
|
|
@ -161,7 +166,7 @@ tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=8)
|
|||
# Inicjalizacja modelu
|
||||
config = AutoModelForCausalLM.from_pretrained(model_name).config
|
||||
model = CustomModel.from_pretrained(model_name, config=config)
|
||||
model.to("cpu")
|
||||
model.to("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
# Konfiguracja treningu
|
||||
training_args = TrainingArguments(
|
||||
|
|
|
|||
Loading…
Reference in New Issue