ably.do/Dockerfile

128 lines
4.0 KiB
Docker

# syntax=docker/dockerfile:1
# Argumenty budowania
ARG USE_CUDA=false
ARG USE_OLLAMA=false
ARG USE_CUDA_VER=cu121
ARG USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2
ARG USE_RERANKING_MODEL=""
ARG USE_TIKTOKEN_ENCODING_NAME="cl100k_base"
ARG BUILD_HASH=dev-build
ARG UID=0
ARG GID=0
# Etap budowania frontendu
FROM --platform=$BUILDPLATFORM node:22-alpine3.20 AS build
ARG TARGETPLATFORM
ARG BUILDPLATFORM
ARG BUILD_HASH
WORKDIR /app
COPY package.json package-lock.json ./
RUN npm ci
COPY . .
ENV APP_BUILD_HASH=${BUILD_HASH}
RUN npm run build
# Etap budowania backendu
FROM --platform=$TARGETPLATFORM python:3.11-slim-bookworm AS base
# Użyj argumentów
ARG TARGETPLATFORM
ARG USE_CUDA
ARG USE_OLLAMA
ARG USE_CUDA_VER
ARG USE_EMBEDDING_MODEL
ARG USE_RERANKING_MODEL
ARG UID
ARG GID
# Ustawienia środowiskowe
ENV ENV=prod \
PORT=8080 \
USE_OLLAMA_DOCKER=${USE_OLLAMA} \
USE_CUDA_DOCKER=${USE_CUDA} \
USE_CUDA_DOCKER_VER=${USE_CUDA_VER} \
USE_EMBEDDING_MODEL_DOCKER=${USE_EMBEDDING_MODEL} \
USE_RERANKING_MODEL_DOCKER=${USE_RERANKING_MODEL} \
OLLAMA_BASE_URL="/ollama" \
OPENAI_API_BASE_URL="" \
OPENAI_API_KEY="" \
WEBUI_SECRET_KEY="" \
SCARF_NO_ANALYTICS=true \
DO_NOT_TRACK=true \
ANONYMIZED_TELEMETRY=false \
WHISPER_MODEL="base" \
WHISPER_MODEL_DIR="/app/backend/data/cache/whisper/models" \
RAG_EMBEDDING_MODEL="$USE_EMBEDDING_MODEL" \
RAG_RERANKING_MODEL="$USE_RERANKING_MODEL" \
SENTENCE_TRANSFORMERS_HOME="/app/backend/data/cache/embedding/models" \
TIKTOKEN_ENCODING_NAME="cl100k_base" \
TIKTOKEN_CACHE_DIR="/app/backend/data/cache/tiktoken" \
HF_HOME="/app/backend/data/cache/embedding/models"
WORKDIR /app/backend
ENV HOME=/root
# Tworzenie użytkownika i grupy, jeśli nie root
RUN if [ $UID -ne 0 ]; then \
if [ $GID -ne 0 ]; then \
addgroup --gid $GID app; \
fi; \
adduser --uid $UID --gid $GID --home $HOME --disabled-password --no-create-home app; \
fi
RUN mkdir -p $HOME/.cache/chroma
RUN echo -n 00000000-0000-0000-0000-000000000000 > $HOME/.cache/chroma/telemetry_user_id
# Upewnij się, że użytkownik ma dostęp do katalogów
RUN chown -R $UID:$GID /app $HOME
# Instalacja zależności systemowych
RUN apt-get update && \
apt-get install -y --no-install-recommends \
git build-essential pandoc gcc netcat-openbsd curl jq \
python3-dev ffmpeg libsm6 libxext6 && \
if [ "$USE_OLLAMA" = "true" ]; then \
curl -fsSL https://ollama.com/install.sh | sh; \
fi && \
rm -rf /var/lib/apt/lists/*
# Instalacja zależności Pythona
COPY --chown=$UID:$GID ./backend/requirements.txt ./requirements.txt
RUN pip3 install uv && \
if [ "$USE_CUDA" = "true" ]; then \
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/$USE_CUDA_DOCKER_VER --no-cache-dir; \
else \
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir; \
fi && \
uv pip install --system -r requirements.txt --no-cache-dir && \
python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && \
python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])" && \
python -c "import os; import tiktoken; tiktoken.get_encoding(os.environ['TIKTOKEN_ENCODING_NAME'])" && \
chown -R $UID:$GID /app/backend/data/
# Kopiowanie plików frontendowych
COPY --chown=$UID:$GID --from=build /app/build /app/build
COPY --chown=$UID:$GID --from=build /app/CHANGELOG.md /app/CHANGELOG.md
COPY --chown=$UID:$GID --from=build /app/package.json /app/package.json
# Kopiowanie plików backendowych
COPY --chown=$UID:$GID ./backend .
EXPOSE 8080
HEALTHCHECK CMD curl --silent --fail http://localhost:${PORT:-8080}/health | jq -ne 'input.status == true' || exit 1
USER $UID:$GID
ARG BUILD_HASH
ENV WEBUI_BUILD_VERSION=${BUILD_HASH}
ENV DOCKER=true
CMD [ "bash", "start.sh"]