ably.do/finding.py

101 lines
3.1 KiB
Python

import weaviate
from weaviate.connect import ConnectionParams
import re
# Konfiguracja klienta Weaviate
client = weaviate.WeaviateClient(
connection_params=ConnectionParams.from_params(
http_host="weaviate",
http_port=8080,
http_secure=False,
grpc_host="weaviate",
grpc_port=50051,
grpc_secure=False,
)
)
client.connect()
# Pobierz kolekcję
collection = client.collections.get("Document")
def extract_full_article(content, article_number):
pattern = rf"Art\.\s*{article_number}\..*?(?=Art\.\s*\d+\.|\Z)"
match = re.search(pattern, content, re.DOTALL)
if match:
return match.group(0).strip()
return None
def extract_relevant_fragment(content, query, context_size=100):
article_match = re.match(r"Art\.\s*(\d+)", query)
if article_match:
article_number = article_match.group(1)
full_article = extract_full_article(content, article_number)
if full_article:
return full_article
index = content.lower().find(query.lower())
if index != -1:
start = max(0, index - context_size)
end = min(len(content), index + len(query) + context_size)
return f"...{content[start:end]}..."
return content[:200] + "..."
def vector_search(query, limit=5):
print(f"\nWyszukiwanie wektorowe dla zapytania: '{query}'")
response = collection.query.near_text(
query=query,
limit=limit
)
for obj in response.objects:
print(f"UUID: {obj.uuid}")
relevant_fragment = extract_relevant_fragment(obj.properties['content'], query)
print(f"Relewantny fragment:\n{relevant_fragment}")
print(f"Nazwa pliku: {obj.properties['fileName']}")
print("---")
def hybrid_search(query, limit=5, alpha=0.5):
print(f"\nWyszukiwanie hybrydowe dla zapytania: '{query}'")
response = collection.query.hybrid(
query=query,
alpha=alpha,
limit=limit
)
for obj in response.objects:
print(f"UUID: {obj.uuid}")
relevant_fragment = extract_relevant_fragment(obj.properties['content'], query)
print(f"Relewantny fragment:\n{relevant_fragment}")
print(f"Nazwa pliku: {obj.properties['fileName']}")
print("---")
#exists = client.collections.exists("Document")
#print(f"Czy kolekcja 'Document' istnieje: {exists}")
#schema = collection.config.get()
#print(f"Nazwa kolekcji: {schema.name}")
#print("Właściwości:")
#for prop in schema.properties:
# print(f"- {prop.name}: {prop.data_type}")
#collection = client.collections.get("Document")
#count = collection.aggregate.over_all(total_count=True).total_count
#print(f"Liczba obiektów w kolekcji: {count}")
#results = collection.query.fetch_objects(limit=5)
#for obj in results.objects:
# print(f"UUID: {obj.uuid}")
# print(f"Nazwa pliku: {obj.properties['fileName']}")
# print(f"Zawartość: {obj.properties['content'][:100]}...") # Pierwsze 100 znaków
# print("---")
# Przykładowe użycie
queries = ["Art. 154", "urlop wypoczynkowy", "Państwowa Inspekcja Pracy"]
for query in queries:
vector_search(query)
hybrid_search(query)
# Zamknij połączenie
client.close()