156 lines
5.5 KiB
Python
156 lines
5.5 KiB
Python
import os
|
|
import torch
|
|
import torch.nn as nn
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
|
|
from datasets import load_dataset
|
|
from PIL import Image
|
|
import re
|
|
import pytesseract
|
|
import docx2txt
|
|
import PyPDF2
|
|
|
|
from huggingface_hub import login
|
|
|
|
login(f"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")
|
|
|
|
def load_file_catalog(catalog_path):
|
|
with open(catalog_path, 'r', encoding='utf-8') as file:
|
|
return json.load(file)
|
|
|
|
def identify_legal_document(filename, file_catalog):
|
|
return file_catalog.get(filename, f"")
|
|
|
|
# Funkcja do ekstrakcji tekstu z różnych typów plików
|
|
def extract_text_from_file(file_path):
|
|
_, ext = os.path.splitext(file_path)
|
|
ext = ext.lower()
|
|
|
|
if ext in ['.txt', '.md']:
|
|
with open(file_path, 'r', encoding='utf-8') as file:
|
|
return file.read()
|
|
elif ext == '.pdf':
|
|
text = ""
|
|
with open(file_path, 'rb') as file:
|
|
reader = PyPDF2.PdfReader(file)
|
|
for page in reader.pages:
|
|
text += page.extract_text()
|
|
return text
|
|
elif ext in ['.doc', '.docx']:
|
|
return docx2txt.process(file_path)
|
|
elif ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
|
|
return pytesseract.image_to_string(Image.open(file_path))
|
|
else:
|
|
return ""
|
|
|
|
# Przygotowanie danych
|
|
def prepare_dataset(directory, catalog_path):
|
|
file_catalog = load_file_catalog(catalog_path)
|
|
data = []
|
|
for root, _, files in os.walk(directory):
|
|
for file in files:
|
|
file_path = os.path.join(root, file)
|
|
text = extract_text_from_file(file_path)
|
|
if text:
|
|
# Sprawdzenie, czy plik znajduje się w katalogu
|
|
doc_type = identify_legal_document(file, file_catalog)
|
|
if doc_type != "Opracowanie własne":
|
|
# Przetwarzanie dla aktów prawnych
|
|
articles = re.split(r'(Art\.\s+\d+\.)', text)[1:]
|
|
for i in range(0, len(articles), 2):
|
|
if i + 1 < len(articles):
|
|
article_number = articles[i].strip()
|
|
article_content = articles[i + 1].strip()
|
|
data.append({
|
|
"text": f"{article_number} {article_content}",
|
|
"source": f"{doc_type}, {article_number}"
|
|
})
|
|
else:
|
|
# Przetwarzanie dla zwykłych dokumentów
|
|
chunks = [text[i:i + 512] for i in range(0, len(text), 512)]
|
|
for chunk in chunks:
|
|
data.append({
|
|
"text": chunk,
|
|
"source": f""
|
|
})
|
|
return data
|
|
|
|
|
|
# Tokenizacja danych
|
|
def tokenize_function(examples):
|
|
inputs = tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512)
|
|
inputs["source"] = examples["source"]
|
|
return inputs
|
|
|
|
# Dostosowany model
|
|
class CustomModel(AutoModelForCausalLM):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.source_embedding = nn.Embedding(1000, config.hidden_size) # Zakładamy maksymalnie 1000 różnych źródeł
|
|
|
|
def forward(self, input_ids, attention_mask=None, labels=None, source=None):
|
|
outputs = super().forward(input_ids, attention_mask=attention_mask, labels=labels)
|
|
if source is not None:
|
|
source_embeds = self.source_embedding(source)
|
|
outputs.logits += source_embeds.unsqueeze(1)
|
|
return outputs
|
|
|
|
# Dostosowany Trainer
|
|
class CustomTrainer(Trainer):
|
|
def compute_loss(self, model, inputs, return_outputs=False):
|
|
labels = inputs.pop("labels")
|
|
source = inputs.pop("source")
|
|
outputs = model(**inputs, labels=labels, source=source)
|
|
loss = outputs.loss
|
|
return (loss, outputs) if return_outputs else loss
|
|
|
|
# Przygotowanie modelu i tokenizera
|
|
model_name = "google/gemma-2-2b"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
model = CustomModel.from_pretrained(model_name)
|
|
|
|
# Przygotowanie datasetu
|
|
catalog_path = "file_catalog.json"
|
|
data = prepare_dataset("files", catalog_path)
|
|
dataset = load_dataset("dict", data=data)
|
|
tokenized_dataset = dataset.map(tokenize_function, batched=True, remove_columns=dataset["train"].column_names)
|
|
|
|
# Konfiguracja treningu
|
|
training_args = TrainingArguments(
|
|
output_dir="./results",
|
|
num_train_epochs=3,
|
|
per_device_train_batch_size=4,
|
|
save_steps=10_000,
|
|
save_total_limit=2,
|
|
)
|
|
|
|
# Inicjalizacja Trainera
|
|
trainer = CustomTrainer(
|
|
model=model,
|
|
args=training_args,
|
|
train_dataset=tokenized_dataset["train"],
|
|
)
|
|
|
|
# Trening modelu
|
|
trainer.train()
|
|
|
|
# Zapisanie modelu
|
|
trainer.save_model("./gemma2_finetuned")
|
|
|
|
# Funkcja do generowania odpowiedzi z cytowaniem
|
|
def generate_answer(question, model, tokenizer, dataset):
|
|
inputs = tokenizer(question, return_tensors="pt")
|
|
outputs = model.generate(**inputs, max_length=200, num_return_sequences=1, output_scores=True, return_dict_in_generate=True)
|
|
|
|
answer = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
|
|
|
|
# Znajdź najbardziej prawdopodobne źródło
|
|
source_probs = outputs.scores[-1][:, model.source_embedding.weight.shape[0]:]
|
|
most_likely_source_idx = torch.argmax(source_probs).item()
|
|
most_likely_source = dataset[most_likely_source_idx]['source']
|
|
|
|
return f"{answer}\n\nŹródło: {most_likely_source}"
|
|
|
|
# Przykład użycia
|
|
question = "Ile dni urlopu przysługuje pracownikowi?"
|
|
answer = generate_answer(question, model, tokenizer, dataset)
|
|
print(answer) |