260 lines
9.3 KiB
Python
260 lines
9.3 KiB
Python
import os
|
|
import torch
|
|
import torch.nn as nn
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForLanguageModeling
|
|
from datasets import Dataset
|
|
import re
|
|
import json
|
|
import PyPDF2
|
|
import docx2txt
|
|
import pytesseract
|
|
from PIL import Image
|
|
from collections import defaultdict
|
|
from huggingface_hub import login
|
|
|
|
# Konfiguracja
|
|
os.environ['TORCH_USE_CUDA_DSA'] = '1'
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
login(token="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")
|
|
|
|
class SourceMapper:
|
|
def __init__(self):
|
|
self.source_to_idx = defaultdict(lambda: len(self.source_to_idx))
|
|
self.idx_to_source = {}
|
|
|
|
def add_source(self, source):
|
|
if source and source not in self.source_to_idx:
|
|
idx = self.source_to_idx[source]
|
|
self.idx_to_source[idx] = source
|
|
|
|
def get_idx(self, source):
|
|
return self.source_to_idx[source] if source else -1
|
|
|
|
def get_source(self, idx):
|
|
return self.idx_to_source.get(idx, "Unknown")
|
|
|
|
def load_file_catalog(catalog_path):
|
|
try:
|
|
with open(catalog_path, 'r', encoding='utf-8') as file:
|
|
return json.load(file)
|
|
except Exception as e:
|
|
print(f"Błąd wczytywania katalogu plików: {str(e)}")
|
|
return {}
|
|
|
|
def identify_legal_document(filename, file_catalog):
|
|
base_name = os.path.splitext(filename)[0].lower()
|
|
return file_catalog.get(base_name, "Opracowanie własne")
|
|
|
|
def extract_text_from_file(file_path):
|
|
try:
|
|
_, ext = os.path.splitext(file_path)
|
|
ext = ext.lower()
|
|
|
|
if ext in ['.txt', '.md']:
|
|
with open(file_path, 'r', encoding='utf-8') as file:
|
|
return file.read()
|
|
elif ext == '.pdf':
|
|
text = ""
|
|
try:
|
|
with open(file_path, 'rb') as file:
|
|
reader = PyPDF2.PdfReader(file)
|
|
for page in reader.pages:
|
|
text += page.extract_text() or ""
|
|
except Exception as e:
|
|
print(f"Błąd PDF: {str(e)}")
|
|
return text
|
|
elif ext in ['.doc', '.docx']:
|
|
return docx2txt.process(file_path)
|
|
elif ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
|
|
return pytesseract.image_to_string(Image.open(file_path))
|
|
else:
|
|
print(f"Nieobsługiwany format pliku: {ext}")
|
|
return ""
|
|
except Exception as e:
|
|
print(f"Błąd ekstrakcji tekstu: {str(e)}")
|
|
return ""
|
|
|
|
def prepare_dataset(directory, catalog_path, source_mapper):
|
|
file_catalog = load_file_catalog(catalog_path)
|
|
data = []
|
|
|
|
print(f"\n{'='*50}\nDIAGNOSTYKA DANYCH\n{'='*50}")
|
|
|
|
for root, _, files in os.walk(directory):
|
|
for file in files:
|
|
file_path = os.path.join(root, file)
|
|
print(f"\nPrzetwarzanie pliku: {file_path}")
|
|
|
|
try:
|
|
text = extract_text_from_file(file_path)
|
|
if not text.strip():
|
|
print("Pominięto - brak tekstu")
|
|
continue
|
|
|
|
print(f"Długość tekstu: {len(text)} znaków")
|
|
|
|
doc_type = identify_legal_document(file, file_catalog)
|
|
print(f"Rozpoznany typ dokumentu: {doc_type}")
|
|
|
|
if doc_type != "Opracowanie własne":
|
|
articles = re.split(r'(?i)(Art[\.\s]+\d+[\.\s]?)', text)
|
|
articles = [a.strip() for a in articles if a.strip()]
|
|
|
|
print(f"Znaleziono {len(articles)} fragmentów")
|
|
|
|
for i in range(0, len(articles)-1, 2):
|
|
article_number = articles[i]
|
|
article_content = articles[i+1]
|
|
|
|
if len(article_content) < 50:
|
|
continue
|
|
|
|
source = f"{doc_type}, {article_number}"
|
|
source_mapper.add_source(source)
|
|
data.append({
|
|
"text": f"{article_number} {article_content}",
|
|
"source_idx": source_mapper.get_idx(source)
|
|
})
|
|
else:
|
|
clean_text = re.sub(r'\s+', ' ', text).strip()
|
|
chunks = [clean_text[i:i+512] for i in range(0, len(clean_text), 512)]
|
|
chunks = [c for c in chunks if c.strip()]
|
|
|
|
for chunk in chunks:
|
|
data.append({
|
|
"text": chunk,
|
|
"source_idx": -1
|
|
})
|
|
print(f"Dodano {len(chunks)} chunków")
|
|
|
|
except Exception as e:
|
|
print(f"Błąd podczas przetwarzania pliku: {str(e)}")
|
|
continue
|
|
|
|
print(f"\nPodsumowanie przygotowania danych:")
|
|
print(f"Łączna liczba przykładów: {len(data)}")
|
|
if data:
|
|
print("Przykładowy wpis:")
|
|
print(json.dumps(data[0], indent=2, ensure_ascii=False))
|
|
else:
|
|
print("BRAK DANYCH - sprawdź diagnostykę powyżej")
|
|
|
|
return data
|
|
|
|
class CustomModel(nn.Module):
|
|
def __init__(self, model_name, config):
|
|
super().__init__()
|
|
self.base_model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
|
|
self.source_embedding = nn.Embedding(10000, config.hidden_size, padding_idx=-1)
|
|
|
|
for param in self.base_model.parameters():
|
|
param.requires_grad = False
|
|
for param in self.base_model.get_output_embeddings().parameters():
|
|
param.requires_grad = True
|
|
|
|
def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs):
|
|
if source_idx is not None:
|
|
valid_indices = torch.clamp(source_idx, 0, self.source_embedding.num_embeddings-1)
|
|
source_embeds = self.source_embedding(valid_indices).unsqueeze(1)
|
|
inputs_embeds = self.base_model.get_input_embeddings()(input_ids) + source_embeds
|
|
return self.base_model(
|
|
inputs_embeds=inputs_embeds,
|
|
attention_mask=attention_mask,
|
|
labels=labels,
|
|
**kwargs
|
|
)
|
|
return self.base_model(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
labels=labels,
|
|
**kwargs
|
|
)
|
|
|
|
def generate(self, *args, **kwargs):
|
|
return self.base_model.generate(*args, **kwargs)
|
|
|
|
class CustomDataCollator(DataCollatorForLanguageModeling):
|
|
def torch_call(self, examples):
|
|
# Przetwórz podstawowe pola
|
|
input_ids = torch.stack([torch.tensor(ex["input_ids"]) for ex in examples])
|
|
attention_mask = torch.stack([torch.tensor(ex["attention_mask"]) for ex in examples])
|
|
labels = torch.stack([torch.tensor(ex["labels"]) for ex in examples])
|
|
|
|
batch = {
|
|
"input_ids": input_ids,
|
|
"attention_mask": attention_mask,
|
|
"labels": labels
|
|
}
|
|
|
|
# Dodaj source_idx jeśli istnieje
|
|
if "source_idx" in examples[0]:
|
|
source_idx = torch.stack([torch.tensor(ex["source_idx"]) for ex in examples])
|
|
batch["source_idx"] = source_idx
|
|
|
|
return batch
|
|
|
|
def main():
|
|
source_mapper = SourceMapper()
|
|
model_name = "crumb/nano-mistral"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
# Przygotowanie danych
|
|
catalog_path = "file_catalog.json"
|
|
data = prepare_dataset("files", catalog_path, source_mapper)
|
|
|
|
if not data:
|
|
print("\nBrak danych do treningu!")
|
|
return
|
|
|
|
dataset = Dataset.from_list(data)
|
|
|
|
def tokenize_function(examples):
|
|
tokenized = tokenizer(
|
|
examples["text"],
|
|
truncation=True,
|
|
padding="max_length",
|
|
max_length=512,
|
|
return_tensors="pt"
|
|
)
|
|
return {
|
|
"input_ids": tokenized["input_ids"].squeeze(),
|
|
"attention_mask": tokenized["attention_mask"].squeeze(),
|
|
"labels": tokenized["input_ids"].squeeze().clone(),
|
|
"source_idx": torch.tensor(examples["source_idx"], dtype=torch.long)
|
|
}
|
|
|
|
tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=16)
|
|
|
|
model = CustomModel(model_name, AutoModelForCausalLM.from_pretrained(model_name).config)
|
|
model.source_mapper = source_mapper
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
model.to(device)
|
|
|
|
training_args = TrainingArguments(
|
|
output_dir="./results",
|
|
num_train_epochs=3,
|
|
per_device_train_batch_size=2,
|
|
gradient_accumulation_steps=4,
|
|
learning_rate=2e-5,
|
|
fp16=torch.cuda.is_available(),
|
|
logging_steps=10,
|
|
save_strategy="steps",
|
|
save_steps=1000,
|
|
report_to="none",
|
|
remove_unused_columns=False
|
|
)
|
|
|
|
trainer = CustomTrainer(
|
|
model=model,
|
|
args=training_args,
|
|
train_dataset=tokenized_dataset,
|
|
data_collator=CustomDataCollator(tokenizer=tokenizer, mlm=False),
|
|
tokenizer=tokenizer
|
|
)
|
|
|
|
print("\nRozpoczęcie treningu...")
|
|
trainer.train()
|
|
|
|
if __name__ == "__main__":
|
|
main() |