ably.do/gpt.py

112 lines
4.1 KiB
Python

import os
import re
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForLanguageModeling
from datasets import Dataset
# Konfiguracja
os.environ["TOKENIZERS_PARALLELISM"] = "false"
MODEL_NAME = "gpt2"
SPECIAL_TOKENS = ["[CITATION_START]", "[CITATION_END]"]
TEXT_FILE_PATH = "./docs/kodekspracy.txt" # Zmień na właściwą ścieżkę
def prepare_dataset_from_file(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
text = f.read()
# Wydziel artykuły za pomocą wyrażenia regularnego
articles = re.findall(r'Art\.\s*\d+[a-z]*\..*?(?=\s*Art\.\s*\d+[a-z]*\.|\Z)', text, flags=re.DOTALL)
formatted_articles = []
for article in articles:
# Usuń zbędne białe znaki
article = ' '.join(article.strip().split())
# Wydziel numer artykułu i treść
art_match = re.match(r'Art\.\s*(\d+[a-z]*)\.?\s*(.*)', article, re.DOTALL)
if art_match:
art_number = art_match.group(1)
art_text = art_match.group(2)
# Podziel na paragrafy, jeśli istnieją
paragraphs = re.split(r'\s*\d+\.)', art_text)
if len(paragraphs) > 1:
formatted_paragraphs = []
for i in range(1, len(paragraphs), 2):
para_num = paragraphs[i].strip()
para_text = paragraphs[i+1].strip()
formatted_paragraphs.append(f"{para_num} {para_text}")
formatted = f"[CITATION_START] Kodeks Pracy, Art. {art_number} [CITATION_END]\n" + "\n".join(formatted_paragraphs)
else:
formatted = f"[CITATION_START] Kodeks Pracy, Art. {art_number} [CITATION_END] {art_text}"
formatted_articles.append({"text": formatted})
return formatted_articles
def main():
# Inicjalizacja tokenizera
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
tokenizer.add_special_tokens({"additional_special_tokens": SPECIAL_TOKENS})
tokenizer.pad_token = tokenizer.eos_token
# Przygotowanie danych
data = prepare_dataset_from_file(TEXT_FILE_PATH)
dataset = Dataset.from_dict({"text": [d["text"] for d in data]})
# Tokenizacja
def tokenize_function(examples):
tokenized = tokenizer(
examples["text"],
truncation=True,
padding="max_length",
max_length=2048, # Zwiększono dla dłuższych artykułów
return_tensors="pt"
)
tokenized["labels"] = tokenized["input_ids"].clone()
return tokenized
tokenized_dataset = dataset.map(tokenize_function, batched=True, remove_columns=dataset.column_names)
# Model i data collator
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
model.resize_token_embeddings(len(tokenizer))
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False
)
# Konfiguracja treningu
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=15, # Zwiększono liczbę epok
per_device_train_batch_size=4, # Zwiększono rozmiar batcha
learning_rate=2e-5, # Zmniejszono learning rate
weight_decay=0.01, # Dodano weight decay
logging_steps=10,
save_steps=500, # Dodano zapisywanie modelu co 500 kroków
eval_steps=500, # Dodano ewaluację co 500 kroków
evaluation_strategy="steps",
load_best_model_at_end=True, # Ładowanie najlepszego modelu na końcu
report_to="none",
save_total_limit=2, # Ograniczenie liczby zapisywanych checkpointów
)
# Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset,
eval_dataset=tokenized_dataset, # Używamy tego samego zbioru do ewaluacji
data_collator=data_collator
)
print("Rozpoczęcie treningu...")
trainer.train()
trainer.save_model("./trained_model/gpt")
tokenizer.save_pretrained("./trained_model/gpt")
if __name__ == "__main__":
main()