ably.do/hft.py

224 lines
7.8 KiB
Python
Raw Normal View History

2025-02-25 04:03:59 -05:00
import os
import torch
import torch.nn as nn
2025-02-25 08:46:02 -05:00
#from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
2025-02-25 08:46:55 -05:00
from transformers import GPTNeoForCausalLM, Trainer, TrainingArguments, AutoTokenizer, AutoModelForCausalLM # Zmiana importu
2025-02-25 06:25:02 -05:00
from datasets import Dataset
2025-02-25 04:03:59 -05:00
from PIL import Image
import re
import pytesseract
import docx2txt
import PyPDF2
2025-02-25 06:21:39 -05:00
import json
2025-02-25 08:50:09 -05:00
from torch.cuda.amp import autocast
2025-02-25 07:34:04 -05:00
from collections import defaultdict
2025-02-25 04:45:37 -05:00
from huggingface_hub import login
2025-02-25 07:46:35 -05:00
import torch
torch.cuda.empty_cache()
2025-02-25 07:34:04 -05:00
login(token="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")
2025-02-25 07:17:17 -05:00
os.environ["TOKENIZERS_PARALLELISM"] = "false"
2025-02-25 04:45:37 -05:00
2025-02-25 07:34:04 -05:00
# Nowa klasa do zarządzania źródłami
class SourceMapper:
def __init__(self):
self.source_to_idx = defaultdict(lambda: len(self.source_to_idx))
self.idx_to_source = {}
def add_source(self, source):
if source and source not in self.source_to_idx:
idx = self.source_to_idx[source]
self.idx_to_source[idx] = source
def get_idx(self, source):
return self.source_to_idx[source] if source else -1
def get_source(self, idx):
return self.idx_to_source.get(idx, "Unknown")
2025-02-25 04:03:59 -05:00
def load_file_catalog(catalog_path):
with open(catalog_path, 'r', encoding='utf-8') as file:
return json.load(file)
def identify_legal_document(filename, file_catalog):
2025-02-25 07:34:04 -05:00
return file_catalog.get(filename, "Opracowanie własne")
2025-02-25 04:03:59 -05:00
def extract_text_from_file(file_path):
_, ext = os.path.splitext(file_path)
ext = ext.lower()
if ext in ['.txt', '.md']:
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
elif ext == '.pdf':
text = ""
with open(file_path, 'rb') as file:
reader = PyPDF2.PdfReader(file)
for page in reader.pages:
text += page.extract_text()
return text
elif ext in ['.doc', '.docx']:
return docx2txt.process(file_path)
elif ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
return pytesseract.image_to_string(Image.open(file_path))
else:
return ""
2025-02-25 07:34:04 -05:00
def prepare_dataset(directory, catalog_path, source_mapper):
2025-02-25 04:03:59 -05:00
file_catalog = load_file_catalog(catalog_path)
data = []
2025-02-25 07:34:04 -05:00
2025-02-25 04:03:59 -05:00
for root, _, files in os.walk(directory):
for file in files:
file_path = os.path.join(root, file)
text = extract_text_from_file(file_path)
2025-02-25 07:34:04 -05:00
if not text:
continue
doc_type = identify_legal_document(file, file_catalog)
if doc_type != "Opracowanie własne":
articles = re.split(r'(Art\.\s+\d+[\.\s])', text)
for i in range(1, len(articles), 2):
article_number = articles[i].strip()
article_content = articles[i+1].strip() if i+1 < len(articles) else ""
source = f"{doc_type}, {article_number}"
source_mapper.add_source(source)
data.append({
"text": f"{article_number} {article_content}",
"source_idx": source_mapper.get_idx(source)
})
else:
chunks = [text[i:i+512] for i in range(0, len(text), 512)]
for chunk in chunks:
data.append({
"text": chunk,
"source_idx": -1 # Brak źródła
})
2025-02-25 04:03:59 -05:00
return data
def tokenize_function(examples):
2025-02-25 07:34:04 -05:00
tokenized = tokenizer(
examples["text"],
truncation=True,
padding="max_length",
max_length=512,
return_tensors="pt"
)
tokenized["labels"] = tokenized["input_ids"].clone()
2025-02-25 07:42:51 -05:00
tokenized["source_idx"] = examples["source_idx"]
2025-02-25 07:34:04 -05:00
return tokenized
2025-02-25 04:03:59 -05:00
2025-02-25 07:40:23 -05:00
def custom_collate_fn(batch):
input_ids = torch.stack([torch.tensor(b["input_ids"]) for b in batch])
attention_mask = torch.stack([torch.tensor(b["attention_mask"]) for b in batch])
labels = torch.stack([torch.tensor(b["labels"]) for b in batch])
2025-02-25 07:42:51 -05:00
# Dodajemy domyślne source_idx, jeśli nie istnieje
source_idx = torch.tensor([b.get("source_idx", -1) for b in batch], dtype=torch.long)
2025-02-25 07:40:23 -05:00
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels, "source_idx": source_idx}
2025-02-25 08:29:02 -05:00
class CustomModel(GPTNeoForCausalLM): # Zmiana klasy bazowej
2025-02-25 04:03:59 -05:00
def __init__(self, config):
super().__init__(config)
2025-02-25 07:34:04 -05:00
self.source_embedding = nn.Embedding(
2025-02-25 08:29:02 -05:00
num_embeddings=1000,
2025-02-25 07:34:04 -05:00
embedding_dim=config.hidden_size,
padding_idx=-1
)
def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs):
outputs = super().forward(
input_ids=input_ids,
attention_mask=attention_mask,
labels=labels,
**kwargs
)
if source_idx is not None:
source_embeds = self.source_embedding(source_idx).unsqueeze(1)
outputs.logits += source_embeds
2025-02-25 04:03:59 -05:00
return outputs
class CustomTrainer(Trainer):
2025-02-25 07:34:04 -05:00
def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
2025-02-25 04:03:59 -05:00
labels = inputs.pop("labels")
2025-02-25 07:34:04 -05:00
source_idx = inputs.pop("source_idx")
outputs = model(**inputs, labels=labels, source_idx=source_idx)
return (outputs.loss, outputs) if return_outputs else outputs.loss
2025-02-25 04:03:59 -05:00
2025-02-25 07:34:04 -05:00
# Inicjalizacja komponentów
source_mapper = SourceMapper()
2025-02-25 08:46:02 -05:00
model_name = "EleutherAI/gpt-neo-2.7B" #"google/gemma-2-2b"
2025-02-25 04:03:59 -05:00
tokenizer = AutoTokenizer.from_pretrained(model_name)
2025-02-25 07:34:04 -05:00
tokenizer.pad_token = tokenizer.eos_token
2025-02-25 04:03:59 -05:00
2025-02-25 07:34:04 -05:00
# Przygotowanie danych
2025-02-25 06:20:29 -05:00
catalog_path = "file_catalog.json"
2025-02-25 07:34:04 -05:00
data = prepare_dataset("files", catalog_path, source_mapper)
2025-02-25 06:25:02 -05:00
dataset = Dataset.from_list(data)
2025-02-25 07:34:04 -05:00
tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=32)
# Inicjalizacja modelu
2025-02-25 08:46:02 -05:00
config = AutoModelForCausalLM.from_pretrained(model_name).config
#model = CustomModel.from_pretrained(model_name, config=config)
model = CustomModel.from_pretrained(model_name)
2025-02-25 08:50:09 -05:00
model.config.gradient_checkpointing = True
model.config.use_cache = False
2025-02-25 08:29:02 -05:00
model.resize_token_embeddings(len(tokenizer))
2025-02-25 07:51:10 -05:00
model.gradient_checkpointing_enable()
2025-02-25 04:03:59 -05:00
# Konfiguracja treningu
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
2025-02-25 07:34:04 -05:00
gradient_accumulation_steps=4,
learning_rate=2e-5,
fp16=True,
logging_steps=100,
save_strategy="steps",
save_steps=1000,
2025-02-25 07:46:35 -05:00
report_to="none",
2025-02-25 07:54:21 -05:00
gradient_checkpointing=True,
2025-02-25 08:11:46 -05:00
per_device_train_batch_size=4, # batch size dla treningu
per_device_eval_batch_size=4, # batch size dla ewaluacji
2025-02-25 07:54:21 -05:00
logging_dir='./logs' # folder do logów
2025-02-25 04:03:59 -05:00
)
2025-02-25 07:34:04 -05:00
# Trening
2025-02-25 04:03:59 -05:00
trainer = CustomTrainer(
model=model,
args=training_args,
2025-02-25 06:32:03 -05:00
train_dataset=tokenized_dataset,
2025-02-25 07:54:21 -05:00
data_collator=custom_collate_fn # Użyj niestandardowego collate_fn
2025-02-25 04:03:59 -05:00
)
trainer.train()
2025-02-25 07:34:04 -05:00
# Funkcja generująca odpowiedź
def generate_answer(question, model, tokenizer, source_mapper, max_length=200):
inputs = tokenizer(question, return_tensors="pt", truncation=True, max_length=512)
outputs = model.generate(
**inputs,
max_length=max_length,
num_return_sequences=1,
return_dict_in_generate=True,
output_scores=True,
)
2025-02-25 04:03:59 -05:00
answer = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
2025-02-25 07:34:04 -05:00
# Pobierz źródło z ostatniego tokena
last_token_id = outputs.sequences[0][-1].item()
2025-02-25 08:46:02 -05:00
source_idx = model.source_embedding.weight.shape[0] - 1 # Tymczasowe rozwiązanie
2025-02-25 07:34:04 -05:00
source = source_mapper.get_source(source_idx)
2025-02-25 04:03:59 -05:00
2025-02-25 07:34:04 -05:00
return f"{answer}\n\nŹródło: {source if source else 'Opracowanie własne'}"
2025-02-25 04:03:59 -05:00
# Przykład użycia
question = "Ile dni urlopu przysługuje pracownikowi?"
2025-02-25 07:34:04 -05:00
answer = generate_answer(question, model, tokenizer, source_mapper)
2025-02-25 04:03:59 -05:00
print(answer)