2025-02-26 05:37:10 -05:00
|
|
|
|
import os
|
2025-02-28 13:47:09 -05:00
|
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
|
|
|
|
|
2025-02-26 05:37:10 -05:00
|
|
|
|
import torch
|
2025-02-28 13:47:09 -05:00
|
|
|
|
import numpy as np
|
|
|
|
|
|
from sentence_transformers import SentenceTransformer
|
2025-02-26 05:37:10 -05:00
|
|
|
|
from datasets import Dataset
|
2025-02-28 13:47:09 -05:00
|
|
|
|
from peft import LoraConfig, get_peft_model
|
|
|
|
|
|
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorForSeq2Seq
|
|
|
|
|
|
import weaviate
|
2025-02-28 14:54:02 -05:00
|
|
|
|
from weaviate.client import WeaviateClient
|
|
|
|
|
|
from weaviate.connect import ConnectionParams
|
2025-02-26 05:37:10 -05:00
|
|
|
|
|
2025-02-28 13:47:09 -05:00
|
|
|
|
# 1️⃣ Inicjalizacja modelu do embeddingów
|
|
|
|
|
|
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
|
2025-02-26 05:37:10 -05:00
|
|
|
|
|
2025-02-28 13:47:09 -05:00
|
|
|
|
# 2️⃣ Połączenie z Weaviate i pobranie dokumentów
|
2025-02-28 14:54:02 -05:00
|
|
|
|
client = WeaviateClient(
|
|
|
|
|
|
connection_params=ConnectionParams.from_params(
|
|
|
|
|
|
http_host="weaviate",
|
|
|
|
|
|
http_port=8080,
|
|
|
|
|
|
http_secure=False,
|
|
|
|
|
|
grpc_host="weaviate",
|
|
|
|
|
|
grpc_port=50051,
|
|
|
|
|
|
grpc_secure=False,
|
|
|
|
|
|
)
|
2025-02-28 13:47:09 -05:00
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
collection_name = "Document" # Zakładam, że to jest nazwa Twojej kolekcji
|
2025-02-28 14:54:02 -05:00
|
|
|
|
result = (
|
|
|
|
|
|
client.query.get(collection_name, ["content"])
|
2025-02-28 13:47:09 -05:00
|
|
|
|
.with_additional(["id"])
|
|
|
|
|
|
.do()
|
|
|
|
|
|
)
|
|
|
|
|
|
|
2025-02-28 14:54:02 -05:00
|
|
|
|
documents = [item['content'] for item in result['data']['Get'][collection_name]]
|
2025-02-28 13:47:09 -05:00
|
|
|
|
|
|
|
|
|
|
# 3️⃣ Generowanie embeddingów
|
|
|
|
|
|
embeddings = embed_model.encode(documents)
|
|
|
|
|
|
|
|
|
|
|
|
# 4️⃣ Przygotowanie danych treningowych
|
|
|
|
|
|
def create_training_data():
|
|
|
|
|
|
data = {
|
|
|
|
|
|
"text": documents,
|
|
|
|
|
|
"embedding": embeddings.tolist()
|
|
|
|
|
|
}
|
|
|
|
|
|
return Dataset.from_dict(data)
|
|
|
|
|
|
|
|
|
|
|
|
dataset = create_training_data()
|
2025-02-26 05:37:10 -05:00
|
|
|
|
|
2025-02-28 13:47:09 -05:00
|
|
|
|
# Podział danych na treningowe i ewaluacyjne
|
|
|
|
|
|
split_dataset = dataset.train_test_split(test_size=0.25)
|
|
|
|
|
|
train_dataset = split_dataset["train"]
|
|
|
|
|
|
eval_dataset = split_dataset["test"]
|
|
|
|
|
|
|
|
|
|
|
|
# 5️⃣ Ładowanie modelu allegro/multislav-5lang
|
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
model_name = "allegro/multislav-5lang"
|
|
|
|
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
# 6️⃣ Konfiguracja LoRA
|
|
|
|
|
|
lora_config = LoraConfig(
|
|
|
|
|
|
r=8, lora_alpha=32, lora_dropout=0.1, bias="none", task_type="SEQ_2_SEQ_LM"
|
|
|
|
|
|
)
|
|
|
|
|
|
model = get_peft_model(model, lora_config)
|
|
|
|
|
|
|
|
|
|
|
|
# 7️⃣ Tokenizacja danych
|
|
|
|
|
|
max_length = 384
|
|
|
|
|
|
|
|
|
|
|
|
def tokenize_function(examples):
|
|
|
|
|
|
return tokenizer(
|
|
|
|
|
|
examples["text"],
|
|
|
|
|
|
padding="max_length",
|
|
|
|
|
|
truncation=True,
|
|
|
|
|
|
max_length=max_length
|
2025-02-26 05:37:10 -05:00
|
|
|
|
)
|
|
|
|
|
|
|
2025-02-28 13:47:09 -05:00
|
|
|
|
tokenized_train = train_dataset.map(tokenize_function, batched=True)
|
|
|
|
|
|
tokenized_eval = eval_dataset.map(tokenize_function, batched=True)
|
|
|
|
|
|
|
|
|
|
|
|
# 8️⃣ Parametry treningu
|
|
|
|
|
|
training_args = TrainingArguments(
|
|
|
|
|
|
output_dir="./results",
|
2025-02-28 14:54:02 -05:00
|
|
|
|
eval_strategy="steps",
|
2025-02-28 13:47:09 -05:00
|
|
|
|
eval_steps=500,
|
|
|
|
|
|
save_strategy="steps",
|
|
|
|
|
|
save_steps=500,
|
|
|
|
|
|
learning_rate=1e-5,
|
|
|
|
|
|
per_device_train_batch_size=2,
|
|
|
|
|
|
per_device_eval_batch_size=2,
|
|
|
|
|
|
num_train_epochs=16,
|
|
|
|
|
|
weight_decay=0.01,
|
|
|
|
|
|
load_best_model_at_end=True,
|
|
|
|
|
|
metric_for_best_model="loss",
|
|
|
|
|
|
greater_is_better=False,
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# 9️⃣ Data Collator
|
|
|
|
|
|
data_collator = DataCollatorForSeq2Seq(
|
|
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
|
|
model=model
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# 🔟 Trening modelu
|
|
|
|
|
|
trainer = Trainer(
|
|
|
|
|
|
model=model,
|
|
|
|
|
|
args=training_args,
|
|
|
|
|
|
train_dataset=tokenized_train,
|
|
|
|
|
|
eval_dataset=tokenized_eval,
|
|
|
|
|
|
data_collator=data_collator,
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
trainer.train()
|
|
|
|
|
|
|
|
|
|
|
|
# 1️⃣1️⃣ Zapis modelu
|
|
|
|
|
|
model.save_pretrained("./models/allegro")
|
|
|
|
|
|
tokenizer.save_pretrained("./models/allegro")
|
2025-02-26 05:37:10 -05:00
|
|
|
|
|
2025-02-28 13:47:09 -05:00
|
|
|
|
print("✅ Model został wytrenowany i zapisany!")
|