ably.do/allegro.py

121 lines
3.2 KiB
Python
Raw Normal View History

2025-02-26 05:37:10 -05:00
import os
2025-02-28 13:47:09 -05:00
os.environ["TOKENIZERS_PARALLELISM"] = "false"
2025-02-26 05:37:10 -05:00
import torch
2025-02-28 13:47:09 -05:00
import numpy as np
from sentence_transformers import SentenceTransformer
2025-02-26 05:37:10 -05:00
from datasets import Dataset
2025-02-28 13:47:09 -05:00
from peft import LoraConfig, get_peft_model
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorForSeq2Seq
import weaviate
from weaviate.client import WeaviateClient
from weaviate.connect import ConnectionParams
2025-02-26 05:37:10 -05:00
2025-02-28 13:47:09 -05:00
# 1⃣ Inicjalizacja modelu do embeddingów
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
2025-02-26 05:37:10 -05:00
2025-02-28 13:47:09 -05:00
# 2⃣ Połączenie z Weaviate i pobranie dokumentów
client = WeaviateClient(
connection_params=ConnectionParams.from_params(
http_host="weaviate",
http_port=8080,
http_secure=False,
grpc_host="weaviate",
grpc_port=50051,
grpc_secure=False,
2025-02-26 05:37:10 -05:00
)
2025-02-28 13:47:09 -05:00
)
collection_name = "Document" # Zakładam, że to jest nazwa Twojej kolekcji
result = (
client.query.get(collection_name, ["content"])
.with_additional(["id"])
.do()
)
documents = [item['content'] for item in result['data']['Get'][collection_name]]
# 3⃣ Generowanie embeddingów
embeddings = embed_model.encode(documents)
# 4⃣ Przygotowanie danych treningowych
def create_training_data():
data = {
"text": documents,
"embedding": embeddings.tolist()
}
return Dataset.from_dict(data)
dataset = create_training_data()
2025-02-26 05:37:10 -05:00
2025-02-28 13:47:09 -05:00
# Podział danych na treningowe i ewaluacyjne
split_dataset = dataset.train_test_split(test_size=0.25)
train_dataset = split_dataset["train"]
eval_dataset = split_dataset["test"]
# 5⃣ Ładowanie modelu allegro/multislav-5lang
device = "cuda" if torch.cuda.is_available() else "cpu"
model_name = "allegro/multislav-5lang"
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# 6⃣ Konfiguracja LoRA
lora_config = LoraConfig(
r=8, lora_alpha=32, lora_dropout=0.1, bias="none", task_type="SEQ_2_SEQ_LM"
)
model = get_peft_model(model, lora_config)
# 7⃣ Tokenizacja danych
max_length = 384
def tokenize_function(examples):
return tokenizer(
examples["text"],
padding="max_length",
truncation=True,
max_length=max_length
2025-02-26 05:37:10 -05:00
)
2025-02-28 13:47:09 -05:00
tokenized_train = train_dataset.map(tokenize_function, batched=True)
tokenized_eval = eval_dataset.map(tokenize_function, batched=True)
# 8⃣ Parametry treningu
training_args = TrainingArguments(
output_dir="./results",
eval_strategy="steps",
eval_steps=500,
save_strategy="steps",
save_steps=500,
learning_rate=1e-5,
per_device_train_batch_size=2,
per_device_eval_batch_size=2,
num_train_epochs=16,
weight_decay=0.01,
load_best_model_at_end=True,
metric_for_best_model="loss",
greater_is_better=False,
)
# 9⃣ Data Collator
data_collator = DataCollatorForSeq2Seq(
tokenizer=tokenizer,
model=model
)
# 🔟 Trening modelu
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_train,
eval_dataset=tokenized_eval,
data_collator=data_collator,
)
trainer.train()
# 1⃣1⃣ Zapis modelu
model.save_pretrained("./models/allegro")
tokenizer.save_pretrained("./models/allegro")
2025-02-26 05:37:10 -05:00
2025-02-28 13:47:09 -05:00
print("✅ Model został wytrenowany i zapisany!")