ably.do/gemma.py

101 lines
2.8 KiB
Python
Raw Normal View History

2025-02-26 07:15:18 -05:00
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
2025-02-26 06:16:11 -05:00
import torch
2025-02-26 07:00:07 -05:00
import faiss
import numpy as np
2025-02-26 06:16:11 -05:00
from sentence_transformers import SentenceTransformer
from datasets import Dataset
from peft import LoraConfig, get_peft_model
2025-02-26 07:15:18 -05:00
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorForLanguageModeling
2025-02-26 06:16:11 -05:00
2025-02-26 07:00:07 -05:00
# 1⃣ Inicjalizacja modelu do embeddingów
2025-02-26 06:16:11 -05:00
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
# 2⃣ Dodanie dokumentów i embeddingów
documents = [
"Jak założyć firmę w Polsce?",
"Jak rozliczyć podatek VAT?",
"Procedura składania reklamacji w e-sklepie.",
"Jakie dokumenty są potrzebne do rejestracji działalności?"
]
2025-02-26 07:00:07 -05:00
embeddings = embed_model.encode(documents)
2025-02-26 06:16:11 -05:00
2025-02-26 07:00:07 -05:00
# 3⃣ Inicjalizacja FAISS i dodanie wektorów
2025-02-26 07:15:18 -05:00
dim = embeddings.shape[1]
index = faiss.IndexFlatL2(dim)
index.add(np.array(embeddings, dtype=np.float32))
2025-02-26 06:16:11 -05:00
2025-02-26 07:00:07 -05:00
# 4⃣ Przygotowanie danych treningowych
2025-02-26 06:16:11 -05:00
def create_training_data():
2025-02-26 07:00:07 -05:00
data = {
"text": documents,
"embedding": embeddings.tolist()
}
return Dataset.from_dict(data)
2025-02-26 06:16:11 -05:00
dataset = create_training_data()
2025-02-26 07:00:07 -05:00
# 5⃣ Ładowanie modelu Gemma 2 7B
2025-02-26 06:16:11 -05:00
device = "cuda" if torch.cuda.is_available() else "cpu"
2025-02-26 07:09:06 -05:00
model_name = "google/gemma-2b"
2025-02-26 06:16:11 -05:00
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
2025-02-26 07:00:07 -05:00
# 6⃣ Konfiguracja LoRA dla efektywnego treningu
2025-02-26 06:16:11 -05:00
lora_config = LoraConfig(
r=8, lora_alpha=32, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM"
)
model = get_peft_model(model, lora_config)
2025-02-26 07:00:07 -05:00
# 7⃣ Tokenizacja danych
2025-02-26 07:15:18 -05:00
max_length = 128
2025-02-26 06:16:11 -05:00
def tokenize_function(examples):
2025-02-26 07:15:18 -05:00
return tokenizer(
examples["text"],
padding="max_length",
truncation=True,
max_length=max_length
)
2025-02-26 06:16:11 -05:00
tokenized_dataset = dataset.map(tokenize_function, batched=True)
2025-02-26 07:00:07 -05:00
# 8⃣ Parametry treningu
2025-02-26 06:16:11 -05:00
training_args = TrainingArguments(
output_dir="./results",
per_device_train_batch_size=2,
2025-02-26 07:15:18 -05:00
gradient_accumulation_steps=4, # Symuluje większy batch size
num_train_epochs=5,
2025-02-26 06:16:11 -05:00
logging_dir="./logs",
2025-02-26 07:15:18 -05:00
save_strategy="epoch",
learning_rate=2e-5,
warmup_steps=100,
fp16=True, # Używa mixed precision training
evaluation_strategy="steps",
eval_steps=500,
load_best_model_at_end=True,
)
# 9⃣ Data Collator
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False
2025-02-26 06:16:11 -05:00
)
2025-02-26 07:15:18 -05:00
# 🔟 Trening modelu
2025-02-26 06:16:11 -05:00
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset,
2025-02-26 07:15:18 -05:00
data_collator=data_collator,
2025-02-26 06:16:11 -05:00
)
trainer.train()
2025-02-26 07:15:18 -05:00
# 1⃣1⃣ Zapisanie dostrojonego modelu
2025-02-26 06:16:11 -05:00
model.save_pretrained("./trained_model/gemma")
tokenizer.save_pretrained("./trained_model/gemma")
2025-02-26 07:15:18 -05:00
print("✅ Model został wytrenowany i zapisany!")