2025-02-26 07:15:18 -05:00
|
|
|
|
import os
|
|
|
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
|
|
|
|
|
2025-02-26 06:16:11 -05:00
|
|
|
|
import torch
|
2025-02-26 07:00:07 -05:00
|
|
|
|
import faiss
|
|
|
|
|
|
import numpy as np
|
2025-02-26 06:16:11 -05:00
|
|
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
from datasets import Dataset
|
|
|
|
|
|
from peft import LoraConfig, get_peft_model
|
2025-02-26 07:15:18 -05:00
|
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorForLanguageModeling
|
2025-02-26 06:16:11 -05:00
|
|
|
|
|
2025-02-26 07:00:07 -05:00
|
|
|
|
# 1️⃣ Inicjalizacja modelu do embeddingów
|
2025-02-26 06:16:11 -05:00
|
|
|
|
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
|
|
|
|
|
|
|
|
|
|
|
|
# 2️⃣ Dodanie dokumentów i embeddingów
|
|
|
|
|
|
documents = [
|
|
|
|
|
|
"Jak założyć firmę w Polsce?",
|
|
|
|
|
|
"Jak rozliczyć podatek VAT?",
|
|
|
|
|
|
"Procedura składania reklamacji w e-sklepie.",
|
|
|
|
|
|
"Jakie dokumenty są potrzebne do rejestracji działalności?"
|
|
|
|
|
|
]
|
2025-02-26 07:00:07 -05:00
|
|
|
|
embeddings = embed_model.encode(documents)
|
2025-02-26 06:16:11 -05:00
|
|
|
|
|
2025-02-26 07:00:07 -05:00
|
|
|
|
# 3️⃣ Inicjalizacja FAISS i dodanie wektorów
|
2025-02-26 07:15:18 -05:00
|
|
|
|
dim = embeddings.shape[1]
|
|
|
|
|
|
index = faiss.IndexFlatL2(dim)
|
|
|
|
|
|
index.add(np.array(embeddings, dtype=np.float32))
|
2025-02-26 06:16:11 -05:00
|
|
|
|
|
2025-02-26 07:00:07 -05:00
|
|
|
|
# 4️⃣ Przygotowanie danych treningowych
|
2025-02-26 06:16:11 -05:00
|
|
|
|
def create_training_data():
|
2025-02-26 07:00:07 -05:00
|
|
|
|
data = {
|
|
|
|
|
|
"text": documents,
|
|
|
|
|
|
"embedding": embeddings.tolist()
|
|
|
|
|
|
}
|
|
|
|
|
|
return Dataset.from_dict(data)
|
2025-02-26 06:16:11 -05:00
|
|
|
|
|
|
|
|
|
|
dataset = create_training_data()
|
|
|
|
|
|
|
2025-02-26 07:00:07 -05:00
|
|
|
|
# 5️⃣ Ładowanie modelu Gemma 2 7B
|
2025-02-26 06:16:11 -05:00
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
2025-02-26 07:09:06 -05:00
|
|
|
|
model_name = "google/gemma-2b"
|
2025-02-26 06:16:11 -05:00
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16).to(device)
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
|
|
|
2025-02-26 07:00:07 -05:00
|
|
|
|
# 6️⃣ Konfiguracja LoRA dla efektywnego treningu
|
2025-02-26 06:16:11 -05:00
|
|
|
|
lora_config = LoraConfig(
|
|
|
|
|
|
r=8, lora_alpha=32, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM"
|
|
|
|
|
|
)
|
|
|
|
|
|
model = get_peft_model(model, lora_config)
|
|
|
|
|
|
|
2025-02-26 07:00:07 -05:00
|
|
|
|
# 7️⃣ Tokenizacja danych
|
2025-02-26 07:15:18 -05:00
|
|
|
|
max_length = 128
|
|
|
|
|
|
|
2025-02-26 06:16:11 -05:00
|
|
|
|
def tokenize_function(examples):
|
2025-02-26 07:15:18 -05:00
|
|
|
|
return tokenizer(
|
|
|
|
|
|
examples["text"],
|
|
|
|
|
|
padding="max_length",
|
|
|
|
|
|
truncation=True,
|
|
|
|
|
|
max_length=max_length
|
|
|
|
|
|
)
|
2025-02-26 06:16:11 -05:00
|
|
|
|
|
|
|
|
|
|
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
|
|
|
|
|
|
2025-02-26 07:00:07 -05:00
|
|
|
|
# 8️⃣ Parametry treningu
|
2025-02-26 06:16:11 -05:00
|
|
|
|
training_args = TrainingArguments(
|
|
|
|
|
|
output_dir="./results",
|
|
|
|
|
|
per_device_train_batch_size=2,
|
2025-02-26 07:15:18 -05:00
|
|
|
|
gradient_accumulation_steps=4, # Symuluje większy batch size
|
|
|
|
|
|
num_train_epochs=5,
|
2025-02-26 06:16:11 -05:00
|
|
|
|
logging_dir="./logs",
|
2025-02-26 07:15:18 -05:00
|
|
|
|
save_strategy="epoch",
|
|
|
|
|
|
learning_rate=2e-5,
|
|
|
|
|
|
warmup_steps=100,
|
|
|
|
|
|
fp16=True, # Używa mixed precision training
|
|
|
|
|
|
evaluation_strategy="steps",
|
|
|
|
|
|
eval_steps=500,
|
|
|
|
|
|
load_best_model_at_end=True,
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# 9️⃣ Data Collator
|
|
|
|
|
|
data_collator = DataCollatorForLanguageModeling(
|
|
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
|
|
mlm=False
|
2025-02-26 06:16:11 -05:00
|
|
|
|
)
|
|
|
|
|
|
|
2025-02-26 07:15:18 -05:00
|
|
|
|
# 🔟 Trening modelu
|
2025-02-26 06:16:11 -05:00
|
|
|
|
trainer = Trainer(
|
|
|
|
|
|
model=model,
|
|
|
|
|
|
args=training_args,
|
|
|
|
|
|
train_dataset=tokenized_dataset,
|
2025-02-26 07:15:18 -05:00
|
|
|
|
data_collator=data_collator,
|
2025-02-26 06:16:11 -05:00
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
trainer.train()
|
|
|
|
|
|
|
2025-02-26 07:15:18 -05:00
|
|
|
|
# 1️⃣1️⃣ Zapisanie dostrojonego modelu
|
2025-02-26 06:16:11 -05:00
|
|
|
|
model.save_pretrained("./trained_model/gemma")
|
|
|
|
|
|
tokenizer.save_pretrained("./trained_model/gemma")
|
|
|
|
|
|
|
2025-02-26 07:15:18 -05:00
|
|
|
|
print("✅ Model został wytrenowany i zapisany!")
|