2025-02-28 13:58:02 -05:00
# syntax=docker/dockerfile:1
2025-02-28 18:19:51 -05:00
# Initialize device type args
# use build args in the docker build command with --build-arg="BUILDARG=true"
2025-02-28 13:58:02 -05:00
ARG USE_CUDA = false
ARG USE_OLLAMA = false
2025-02-28 18:19:51 -05:00
# Tested with cu117 for CUDA 11 and cu121 for CUDA 12 (default)
2025-02-28 13:58:02 -05:00
ARG USE_CUDA_VER = cu121
2025-02-28 18:19:51 -05:00
# any sentence transformer model; models to use can be found at https://huggingface.co/models?library=sentence-transformers
# Leaderboard: https://huggingface.co/spaces/mteb/leaderboard
# for better performance and multilangauge support use "intfloat/multilingual-e5-large" (~2.5GB) or "intfloat/multilingual-e5-base" (~1.5GB)
# IMPORTANT: If you change the embedding model (sentence-transformers/all-MiniLM-L6-v2) and vice versa, you aren't able to use RAG Chat with your previous documents loaded in the WebUI! You need to re-embed them.
2025-02-28 13:58:02 -05:00
ARG USE_EMBEDDING_MODEL = sentence-transformers/all-MiniLM-L6-v2
ARG USE_RERANKING_MODEL = ""
2025-02-28 18:19:51 -05:00
# Tiktoken encoding name; models to use can be found at https://huggingface.co/models?library=tiktoken
2025-02-28 13:58:02 -05:00
ARG USE_TIKTOKEN_ENCODING_NAME = "cl100k_base"
2025-02-28 18:19:51 -05:00
2025-02-28 13:58:02 -05:00
ARG BUILD_HASH = dev-build
2025-02-28 18:19:51 -05:00
# Override at your own risk - non-root configurations are untested
2025-02-28 13:58:02 -05:00
ARG UID = 0
ARG GID = 0
2025-02-28 18:19:51 -05:00
######## WebUI frontend ########
FROM --platform=$BUILDPLATFORM node:22-alpine3.20 AS build
2025-02-28 13:58:02 -05:00
ARG BUILD_HASH
2025-02-28 13:47:09 -05:00
WORKDIR /app
2025-02-28 13:58:02 -05:00
COPY package.json package-lock.json ./
RUN npm ci
2025-02-28 13:47:09 -05:00
2025-02-28 13:58:02 -05:00
COPY . .
ENV APP_BUILD_HASH = ${ BUILD_HASH }
RUN npm run build
2025-02-28 13:47:09 -05:00
2025-02-28 18:19:51 -05:00
######## WebUI backend ########
2025-02-28 14:36:38 -05:00
FROM python:3.11-slim-bookworm AS base
2025-02-28 13:47:09 -05:00
2025-02-28 18:19:51 -05:00
# Use args
2025-02-28 13:58:02 -05:00
ARG USE_CUDA
ARG USE_OLLAMA
ARG USE_CUDA_VER
ARG USE_EMBEDDING_MODEL
ARG USE_RERANKING_MODEL
ARG UID
ARG GID
2025-02-28 13:47:09 -05:00
2025-02-28 18:19:51 -05:00
## Basis ##
2025-02-28 13:58:02 -05:00
ENV ENV = prod \
PORT = 8080 \
2025-02-28 18:19:51 -05:00
# pass build args to the build
2025-02-28 13:58:02 -05:00
USE_OLLAMA_DOCKER = ${ USE_OLLAMA } \
USE_CUDA_DOCKER = ${ USE_CUDA } \
USE_CUDA_DOCKER_VER = ${ USE_CUDA_VER } \
USE_EMBEDDING_MODEL_DOCKER = ${ USE_EMBEDDING_MODEL } \
2025-02-28 18:19:51 -05:00
USE_RERANKING_MODEL_DOCKER = ${ USE_RERANKING_MODEL }
## Basis URL Config ##
ENV OLLAMA_BASE_URL = "/ollama" \
OPENAI_API_BASE_URL = ""
## API Key and Security Config ##
ENV OPENAI_API_KEY = "" \
2025-02-28 13:58:02 -05:00
WEBUI_SECRET_KEY = "" \
SCARF_NO_ANALYTICS = true \
DO_NOT_TRACK = true \
2025-02-28 18:19:51 -05:00
ANONYMIZED_TELEMETRY = false
#### Other models #########################################################
## whisper TTS model settings ##
ENV WHISPER_MODEL = "base" \
WHISPER_MODEL_DIR = "/app/backend/data/cache/whisper/models"
## RAG Embedding model settings ##
ENV RAG_EMBEDDING_MODEL = " $USE_EMBEDDING_MODEL_DOCKER " \
RAG_RERANKING_MODEL = " $USE_RERANKING_MODEL_DOCKER " \
SENTENCE_TRANSFORMERS_HOME = "/app/backend/data/cache/embedding/models"
## Tiktoken model settings ##
ENV TIKTOKEN_ENCODING_NAME = "cl100k_base" \
TIKTOKEN_CACHE_DIR = "/app/backend/data/cache/tiktoken"
## Hugging Face download cache ##
ENV HF_HOME = "/app/backend/data/cache/embedding/models"
## Torch Extensions ##
# ENV TORCH_EXTENSIONS_DIR="/.cache/torch_extensions"
#### Other models ##########################################################
2025-02-28 13:58:02 -05:00
WORKDIR /app/backend
ENV HOME = /root
2025-02-28 18:19:51 -05:00
# Create user and group if not root
2025-02-28 13:58:02 -05:00
RUN if [ $UID -ne 0 ] ; then \
if [ $GID -ne 0 ] ; then \
addgroup --gid $GID app; \
fi ; \
adduser --uid $UID --gid $GID --home $HOME --disabled-password --no-create-home app; \
fi
RUN mkdir -p $HOME /.cache/chroma
RUN echo -n 00000000-0000-0000-0000-000000000000 > $HOME /.cache/chroma/telemetry_user_id
2025-02-28 18:19:51 -05:00
# Make sure the user has access to the app and root directory
2025-02-28 13:58:02 -05:00
RUN chown -R $UID :$GID /app $HOME
2025-02-28 18:19:51 -05:00
RUN if [ " $USE_OLLAMA " = "true" ] ; then \
apt-get update && \
# Install pandoc and netcat
apt-get install -y --no-install-recommends git build-essential pandoc netcat-openbsd curl && \
apt-get install -y --no-install-recommends gcc python3-dev && \
# for RAG OCR
apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 && \
# install helper tools
apt-get install -y --no-install-recommends curl jq && \
# install ollama
curl -fsSL https://ollama.com/install.sh | sh && \
# cleanup
rm -rf /var/lib/apt/lists/*; \
else \
apt-get update && \
# Install pandoc, netcat and gcc
apt-get install -y --no-install-recommends git build-essential pandoc gcc netcat-openbsd curl jq && \
apt-get install -y --no-install-recommends gcc python3-dev && \
# for RAG OCR
apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 && \
# cleanup
rm -rf /var/lib/apt/lists/*; \
fi
# install python dependencies
2025-02-28 13:58:02 -05:00
COPY --chown= $UID :$GID ./backend/requirements.txt ./requirements.txt
RUN pip3 install uv && \
if [ " $USE_CUDA " = "true" ] ; then \
2025-02-28 18:19:51 -05:00
# If you use CUDA the whisper and embedding model will be downloaded on first use
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/$USE_CUDA_DOCKER_VER --no-cache-dir && \
uv pip install --system -r requirements.txt --no-cache-dir && \
python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && \
python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])" ; \
python -c "import os; import tiktoken; tiktoken.get_encoding(os.environ['TIKTOKEN_ENCODING_NAME'])" ; \
2025-02-28 13:58:02 -05:00
else \
2025-02-28 18:19:51 -05:00
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir && \
2025-02-28 13:58:02 -05:00
uv pip install --system -r requirements.txt --no-cache-dir && \
python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && \
2025-02-28 18:19:51 -05:00
python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])" ; \
python -c "import os; import tiktoken; tiktoken.get_encoding(os.environ['TIKTOKEN_ENCODING_NAME'])" ; \
fi ; \
2025-02-28 13:58:02 -05:00
chown -R $UID :$GID /app/backend/data/
2025-02-28 18:19:51 -05:00
# copy embedding weight from build
# RUN mkdir -p /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2
# COPY --from=build /app/onnx /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2/onnx
# copy built frontend files
2025-02-28 13:58:02 -05:00
COPY --chown= $UID :$GID --from= build /app/build /app/build
COPY --chown= $UID :$GID --from= build /app/CHANGELOG.md /app/CHANGELOG.md
COPY --chown= $UID :$GID --from= build /app/package.json /app/package.json
2025-02-28 18:19:51 -05:00
# copy backend files
2025-02-28 13:58:02 -05:00
COPY --chown= $UID :$GID ./backend .
EXPOSE 8080
HEALTHCHECK CMD curl --silent --fail http://localhost:${ PORT :- 8080 } /health | jq -ne 'input.status == true' || exit 1
USER $UID:$GID
2025-02-28 13:47:09 -05:00
2025-02-28 13:58:02 -05:00
ARG BUILD_HASH
ENV WEBUI_BUILD_VERSION = ${ BUILD_HASH }
ENV DOCKER = true
2025-02-28 13:47:09 -05:00
2025-02-28 18:19:51 -05:00
CMD [ "bash" , "start.sh" ]