ably.do/gpt.py

63 lines
1.8 KiB
Python
Raw Normal View History

2025-02-25 18:19:51 -05:00
import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
from datasets import Dataset
# Konfiguracja
os.environ["TOKENIZERS_PARALLELISM"] = "false"
2025-02-25 18:22:03 -05:00
MODEL_NAME = "gpt2"
2025-02-25 18:19:51 -05:00
SPECIAL_TOKENS = ["[CITATION_START]", "[CITATION_END]"]
def prepare_simple_dataset():
return [
2025-02-25 18:22:03 -05:00
{"text": "[CITATION_START] Kodeks Pracy, Art. 1 [CITATION_END] Tekst artykułu..."},
{"text": "[CITATION_START] Kodeks Pracy, Art. 2 [CITATION_END] Inny tekst..."}
2025-02-25 18:19:51 -05:00
]
def main():
2025-02-25 18:22:03 -05:00
# Inicjalizacja tokenizera
2025-02-25 18:19:51 -05:00
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
tokenizer.add_special_tokens({"additional_special_tokens": SPECIAL_TOKENS})
tokenizer.pad_token = tokenizer.eos_token
# Przygotowanie danych
data = prepare_simple_dataset()
2025-02-25 18:22:03 -05:00
dataset = Dataset.from_dict({"text": [d["text"] for d in data]})
2025-02-25 18:19:51 -05:00
# Tokenizacja
def tokenize_function(examples):
2025-02-25 18:22:03 -05:00
return tokenizer(
2025-02-25 18:19:51 -05:00
examples["text"],
truncation=True,
padding="max_length",
max_length=128,
return_tensors="pt"
)
tokenized_dataset = dataset.map(tokenize_function, batched=True)
# Model
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
model.resize_token_embeddings(len(tokenizer))
# Konfiguracja treningu
training_args = TrainingArguments(
output_dir="./results",
2025-02-25 18:22:03 -05:00
num_train_pochs=1,
2025-02-25 18:19:51 -05:00
per_device_train_batch_size=2,
2025-02-25 18:22:03 -05:00
remove_unused_columns=True, # Kluczowa zmiana
logging_steps=1
2025-02-25 18:19:51 -05:00
)
# Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset,
)
print("Rozpoczęcie treningu...")
trainer.train()
if __name__ == "__main__":
main()