mod
This commit is contained in:
parent
999b9ade54
commit
204dd4421a
35
hft.py
35
hft.py
|
|
@ -18,6 +18,11 @@ torch.cuda.empty_cache()
|
|||
# Logowanie do Hugging Face Hub
|
||||
login(token="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")
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
||||
|
||||
def free_memory():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
|
||||
class SourceMapper:
|
||||
def __init__(self):
|
||||
|
|
@ -54,7 +59,7 @@ def extract_text_from_file(file_path):
|
|||
with open(file_path, 'rb') as file:
|
||||
reader = PyPDF2.PdfReader(file)
|
||||
for page in reader.pages:
|
||||
text += page.extract_text()
|
||||
text += page.extract_text() or ""
|
||||
return text
|
||||
elif ext in ['.doc', '.docx']:
|
||||
return docx2txt.process(file_path)
|
||||
|
|
@ -76,7 +81,7 @@ def prepare_dataset(directory, catalog_path, source_mapper):
|
|||
|
||||
doc_type = identify_legal_document(file, file_catalog)
|
||||
if doc_type != "Opracowanie własne":
|
||||
articles = re.split(r'(Art\.?\s+\d+[\.\s])', text)
|
||||
articles = re.split(r'(Art\.\s+\d+\.)', text)
|
||||
for i in range(1, len(articles), 2):
|
||||
article_number = articles[i].strip()
|
||||
article_content = articles[i+1].strip() if i+1 < len(articles) else ""
|
||||
|
|
@ -137,14 +142,6 @@ class CustomModel(GPTNeoForCausalLM):
|
|||
outputs.logits += source_embeds
|
||||
return outputs
|
||||
|
||||
class CustomTrainer(Trainer):
|
||||
def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
|
||||
labels = inputs.pop("labels")
|
||||
with autocast():
|
||||
source_idx = inputs.pop("source_idx")
|
||||
outputs = model(**inputs, labels=labels, source_idx=source_idx)
|
||||
return (outputs.loss, outputs) if return_outputs else outputs.loss
|
||||
|
||||
source_mapper = SourceMapper()
|
||||
model_name = "EleutherAI/gpt-neo-2.7B"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
|
|
@ -152,7 +149,7 @@ tokenizer.pad_token = tokenizer.eos_token
|
|||
|
||||
data = prepare_dataset("files", "file_catalog.json", source_mapper)
|
||||
dataset = Dataset.from_list(data)
|
||||
tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=32)
|
||||
tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=16)
|
||||
|
||||
config = AutoModelForCausalLM.from_pretrained(model_name).config
|
||||
model = CustomModel.from_pretrained(model_name)
|
||||
|
|
@ -164,26 +161,28 @@ model.gradient_checkpointing_enable()
|
|||
training_args = TrainingArguments(
|
||||
output_dir="./results",
|
||||
num_train_epochs=3,
|
||||
gradient_accumulation_steps=4,
|
||||
gradient_accumulation_steps=8,
|
||||
learning_rate=2e-5,
|
||||
fp16=True,
|
||||
logging_steps=100,
|
||||
logging_steps=50,
|
||||
save_strategy="steps",
|
||||
save_steps=1000,
|
||||
report_to="none",
|
||||
per_device_train_batch_size=4,
|
||||
per_device_eval_batch_size=4,
|
||||
save_steps=500,
|
||||
per_device_train_batch_size=2,
|
||||
per_device_eval_batch_size=2,
|
||||
logging_dir='./logs'
|
||||
)
|
||||
|
||||
trainer = CustomTrainer(
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=tokenized_dataset,
|
||||
data_collator=custom_collate_fn
|
||||
)
|
||||
|
||||
trainer.train()
|
||||
|
||||
free_memory()
|
||||
|
||||
# Funkcja generująca odpowiedź
|
||||
def generate_answer(question, model, tokenizer, source_mapper, max_length=200):
|
||||
inputs = tokenizer(question, return_tensors="pt", truncation=True, max_length=512)
|
||||
|
|
|
|||
Loading…
Reference in New Issue