mod
This commit is contained in:
parent
fef5717c2b
commit
5a2aef665c
19
hft.py
19
hft.py
|
|
@ -109,26 +109,22 @@ def custom_collate_fn(batch):
|
|||
input_ids = torch.stack([torch.tensor(b["input_ids"]) for b in batch])
|
||||
attention_mask = torch.stack([torch.tensor(b["attention_mask"]) for b in batch])
|
||||
labels = torch.stack([torch.tensor(b["labels"]) for b in batch])
|
||||
|
||||
# Dodajemy domyślne source_idx, jeśli nie istnieje
|
||||
source_idx = torch.tensor([b.get("source_idx", -1) for b in batch], dtype=torch.long)
|
||||
|
||||
return {
|
||||
"input_ids": input_ids,
|
||||
"attention_mask": attention_mask,
|
||||
"labels": labels,
|
||||
"source_idx": source_idx
|
||||
}
|
||||
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels, "source_idx": source_idx}
|
||||
|
||||
class CustomModel(AutoModelForCausalLM):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.source_embedding = nn.Embedding(
|
||||
num_embeddings=1000,
|
||||
num_embeddings=1000, # Maksymalna liczba unikalnych źródeł
|
||||
embedding_dim=config.hidden_size,
|
||||
padding_idx=-1
|
||||
)
|
||||
|
||||
def forward(self, input_ids=None, attention_mask=None, labels=None, **kwargs):
|
||||
source_idx = kwargs.pop('source_idx', None) # Pobierz i usuń source_idx z kwargs
|
||||
def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs):
|
||||
outputs = super().forward(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
|
|
@ -137,7 +133,7 @@ class CustomModel(AutoModelForCausalLM):
|
|||
)
|
||||
|
||||
if source_idx is not None:
|
||||
source_idx = source_idx.to(outputs.logits.device) # Ensure same device
|
||||
# Dodajemy embedding źródła do hidden states
|
||||
source_embeds = self.source_embedding(source_idx).unsqueeze(1)
|
||||
outputs.logits += source_embeds
|
||||
|
||||
|
|
@ -154,7 +150,6 @@ class CustomTrainer(Trainer):
|
|||
source_mapper = SourceMapper()
|
||||
model_name = "crumb/nano-mistral" #"google/gemma-2-2b"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
if tokenizer.pad_token is None:
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
|
||||
# Przygotowanie danych
|
||||
|
|
@ -166,7 +161,7 @@ tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=8)
|
|||
# Inicjalizacja modelu
|
||||
config = AutoModelForCausalLM.from_pretrained(model_name).config
|
||||
model = CustomModel.from_pretrained(model_name, config=config)
|
||||
model.to("cuda" if torch.cuda.is_available() else "cpu")
|
||||
model.to("cpu")
|
||||
|
||||
# Konfiguracja treningu
|
||||
training_args = TrainingArguments(
|
||||
|
|
|
|||
Loading…
Reference in New Issue