This commit is contained in:
l.gabrysiak 2025-02-25 23:17:07 +01:00
parent 5f06f859a5
commit b1512778d3
5 changed files with 240 additions and 208 deletions

420
hft.py
View File

@ -1,8 +1,6 @@
import os import os
import torch import torch
import torch.nn as nn import torch.nn as nn
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForLanguageModeling
from datasets import Dataset
import re import re
import json import json
import PyPDF2 import PyPDF2
@ -10,252 +8,286 @@ import docx2txt
import pytesseract import pytesseract
from PIL import Image from PIL import Image
from collections import defaultdict from collections import defaultdict
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
TrainingArguments,
DataCollatorForLanguageModeling
)
from datasets import Dataset
from huggingface_hub import login from huggingface_hub import login
# Konfiguracja # Konfiguracja
os.environ['TORCH_USE_CUDA_DSA'] = '1'
os.environ["TOKENIZERS_PARALLELISM"] = "false" os.environ["TOKENIZERS_PARALLELISM"] = "false"
login(token="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") login(token="TWÓJ_TOKEN_HUGGINGFACE")
class SourceMapper: class LegalAITrainer:
def __init__(self): def __init__(self):
self.source_to_idx = defaultdict(lambda: len(self.source_to_idx)) self.source_mapper = defaultdict(lambda: len(self.source_mapper))
self.idx_to_source = {} self.idx_to_source = {}
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def add_source(self, source): class SourceMapper:
if source and source not in self.source_to_idx: def __init__(self):
idx = self.source_to_idx[source] self.source_to_idx = defaultdict(lambda: len(self.source_to_idx))
self.idx_to_source[idx] = source self.idx_to_source = {}
def get_idx(self, source): def add_source(self, source):
return self.source_to_idx[source] if source else -1 if source and source not in self.source_to_idx:
idx = self.source_to_idx[source]
self.idx_to_source[idx] = source
def get_source(self, idx): def get_idx(self, source):
return self.idx_to_source.get(idx, "Unknown") return self.source_to_idx[source] if source else -1
def load_file_catalog(catalog_path): def get_source(self, idx):
try: return self.idx_to_source.get(idx, "Unknown")
with open(catalog_path, 'r', encoding='utf-8') as file:
return json.load(file)
except Exception as e:
print(f"Błąd wczytywania katalogu plików: {str(e)}")
return {}
def identify_legal_document(filename, file_catalog): class LegalModel(nn.Module):
base_name = os.path.splitext(filename)[0].lower() def __init__(self, model_name, config):
return file_catalog.get(base_name, "Opracowanie własne") super().__init__()
self.base_model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
self.source_embedding = nn.Embedding(100000, config.hidden_size, padding_idx=-1)
self.confidence_layer = nn.Linear(config.hidden_size, 1)
def extract_text_from_file(file_path): # Freeze base model
try: for param in self.base_model.parameters():
_, ext = os.path.splitext(file_path) param.requires_grad = False
ext = ext.lower()
if ext in ['.txt', '.md']: # Trainable components
with open(file_path, 'r', encoding='utf-8') as file: for layer in [self.source_embedding, self.confidence_layer]:
return file.read() for param in layer.parameters():
elif ext == '.pdf': param.requires_grad = True
text = ""
try: def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None):
with open(file_path, 'rb') as file: if source_idx is not None:
reader = PyPDF2.PdfReader(file) source_idx = torch.clamp(source_idx, 0, self.source_embedding.num_embeddings-1)
source_embeds = self.source_embedding(source_idx).unsqueeze(1)
inputs_embeds = self.base_model.get_input_embeddings()(input_ids) + source_embeds
outputs = self.base_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
labels=labels
)
else:
outputs = self.base_model(
input_ids=input_ids,
attention_mask=attention_mask,
labels=labels
)
confidence = torch.sigmoid(self.confidence_layer(outputs.hidden_states[-1].mean(dim=1)))
return {
"loss": outputs.loss,
"logits": outputs.logits,
"confidence": confidence,
"hidden_states": outputs.hidden_states
}
def load_file_catalog(self, catalog_path):
try:
with open(catalog_path, 'r', encoding='utf-8') as f:
return json.load(f)
except Exception as e:
print(f"Błąd ładowania katalogu: {str(e)}")
return {}
def extract_text(self, file_path):
ext = os.path.splitext(file_path)[1].lower()
try:
if ext in ['.txt', '.md']:
with open(file_path, 'r', encoding='utf-8') as f:
return f.read()
elif ext == '.pdf':
text = ""
with open(file_path, 'rb') as f:
reader = PyPDF2.PdfReader(f)
for page in reader.pages: for page in reader.pages:
text += page.extract_text() or "" text += page.extract_text() or ""
except Exception as e: return text
print(f"Błąd PDF: {str(e)}") elif ext in ['.doc', '.docx']:
return text return docx2txt.process(file_path)
elif ext in ['.doc', '.docx']: elif ext in ['.jpg', '.jpeg', '.png']:
return docx2txt.process(file_path) return pytesseract.image_to_string(Image.open(file_path))
elif ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']: else:
return pytesseract.image_to_string(Image.open(file_path)) return ""
else: except Exception as e:
print(f"Nieobsługiwany format pliku: {ext}") print(f"Błąd przetwarzania {file_path}: {str(e)}")
return "" return ""
except Exception as e:
print(f"Błąd ekstrakcji tekstu: {str(e)}")
return ""
def prepare_dataset(directory, catalog_path, source_mapper): def prepare_data(self, data_dir, catalog_path):
file_catalog = load_file_catalog(catalog_path) catalog = self.load_file_catalog(catalog_path)
data = [] data = []
source_mapper = self.SourceMapper()
print(f"\n{'='*50}\nDIAGNOSTYKA DANYCH\n{'='*50}") for root, _, files in os.walk(data_dir):
for file in files:
file_path = os.path.join(root, file)
text = self.extract_text(file_path)
for root, _, files in os.walk(directory): if not text:
for file in files:
file_path = os.path.join(root, file)
print(f"\nPrzetwarzanie pliku: {file_path}")
try:
text = extract_text_from_file(file_path)
if not text.strip():
print("Pominięto - brak tekstu")
continue continue
print(f"Długość tekstu: {len(text)} znaków") doc_type = catalog.get(os.path.splitext(file)[0].lower(), "Opracowanie własne")
doc_type = identify_legal_document(file, file_catalog)
print(f"Rozpoznany typ dokumentu: {doc_type}")
if doc_type != "Opracowanie własne": if doc_type != "Opracowanie własne":
articles = re.split(r'(?i)(Art[\.\s]+\d+[\.\s]?)', text) articles = re.split(r'(?i)(Art\.\s*\d+[a-z]*)', text)
articles = [a.strip() for a in articles if a.strip()] for i in range(1, len(articles), 2):
art_num = articles[i].strip()
content = articles[i+1].strip()
print(f"Znaleziono {len(articles)} fragmentów") if len(content) < 100:
for i in range(0, len(articles)-1, 2):
article_number = articles[i]
article_content = articles[i+1]
if len(article_content) < 50:
continue continue
source = f"{doc_type}, {article_number}" source = f"{doc_type}, {art_num}"
source_mapper.add_source(source) source_mapper.add_source(source)
data.append({ data.append({
"text": f"{article_number} {article_content}", "text": f"[LEGAL] {art_num} {content}",
"source_idx": source_mapper.get_idx(source) "source_idx": source_mapper.get_idx(source),
"is_legal": 1
}) })
else: else:
clean_text = re.sub(r'\s+', ' ', text).strip() chunks = [f"[GENERAL] {text[i:i+512]}" for i in range(0, len(text), 512)]
chunks = [clean_text[i:i+512] for i in range(0, len(clean_text), 512)]
chunks = [c for c in chunks if c.strip()]
for chunk in chunks: for chunk in chunks:
data.append({ data.append({
"text": chunk, "text": chunk,
"source_idx": -1 "source_idx": -1,
"is_legal": 0
}) })
print(f"Dodano {len(chunks)} chunków")
except Exception as e: return Dataset.from_dict({k: [d[k] for d in data] for k in data[0]}), source_mapper
print(f"Błąd podczas przetwarzania pliku: {str(e)}")
continue
print(f"\nPodsumowanie przygotowania danych:") def train(self, model_name="crumb/nano-mistral", data_dir="data", catalog_path="catalog.json"):
print(f"Łączna liczba przykładów: {len(data)}") # Przygotowanie danych
if data: dataset, source_mapper = self.prepare_data(data_dir, catalog_path)
print("Przykładowy wpis:") tokenizer = AutoTokenizer.from_pretrained(model_name)
print(json.dumps(data[0], indent=2, ensure_ascii=False)) tokenizer.pad_token = tokenizer.eos_token
else:
print("BRAK DANYCH - sprawdź diagnostykę powyżej")
return data # Tokenizacja
def tokenize_fn(examples):
class CustomModel(nn.Module): tokenized = tokenizer(
def __init__(self, model_name, config): examples["text"],
super().__init__() padding="max_length",
self.base_model = AutoModelForCausalLM.from_pretrained(model_name, config=config) truncation=True,
self.source_embedding = nn.Embedding(10000, config.hidden_size, padding_idx=-1) max_length=512,
return_tensors="pt"
for param in self.base_model.parameters():
param.requires_grad = False
for param in self.base_model.get_output_embeddings().parameters():
param.requires_grad = True
def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs):
if source_idx is not None:
valid_indices = torch.clamp(source_idx, 0, self.source_embedding.num_embeddings-1)
source_embeds = self.source_embedding(valid_indices).unsqueeze(1)
inputs_embeds = self.base_model.get_input_embeddings()(input_ids) + source_embeds
return self.base_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
labels=labels,
**kwargs
) )
return self.base_model( return {
input_ids=input_ids, "input_ids": tokenized["input_ids"].squeeze(),
attention_mask=attention_mask, "attention_mask": tokenized["attention_mask"].squeeze(),
labels=labels, "labels": tokenized["input_ids"].squeeze().clone(),
**kwargs "source_idx": examples["source_idx"]
}
tokenized_dataset = dataset.map(tokenize_fn, batched=True, batch_size=16)
# Inicjalizacja modelu
config = AutoModelForCausalLM.from_pretrained(model_name).config
model = self.LegalModel(model_name, config).to(self.device)
# Konfiguracja treningu
training_args = TrainingArguments(
output_dir="./legal_ai_model",
num_train_epochs=5,
per_device_train_batch_size=2,
gradient_accumulation_steps=4,
learning_rate=2e-5,
fp16=torch.cuda.is_available(),
logging_steps=50,
save_strategy="steps",
save_steps=500,
report_to="none",
remove_unused_columns=False
) )
def generate(self, *args, **kwargs): # Customowy Trainer
return self.base_model.generate(*args, **kwargs) class LegalTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
outputs = model(**inputs)
loss = outputs.loss
class CustomDataCollator(DataCollatorForLanguageModeling): # Confidence loss
def torch_call(self, examples): target_conf = (inputs["source_idx"] != -1).float()
# Przetwórz podstawowe pola conf_loss = nn.BCELoss()(outputs.confidence.squeeze(), target_conf)
input_ids = torch.stack([torch.tensor(ex["input_ids"]) for ex in examples])
attention_mask = torch.stack([torch.tensor(ex["attention_mask"]) for ex in examples])
labels = torch.stack([torch.tensor(ex["labels"]) for ex in examples])
batch = { total_loss = loss + 0.7*conf_loss
"input_ids": input_ids, return (total_loss, outputs) if return_outputs else total_loss
"attention_mask": attention_mask,
"labels": labels
}
# Dodaj source_idx jeśli istnieje # Trening
if "source_idx" in examples[0]: trainer = LegalTrainer(
source_idx = torch.stack([torch.tensor(ex["source_idx"]) for ex in examples]) model=model,
batch["source_idx"] = source_idx args=training_args,
train_dataset=tokenized_dataset,
data_collator=DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
)
return batch print("Rozpoczęcie treningu...")
trainer.train()
def main(): # Zapisz model
source_mapper = SourceMapper() model.save_pretrained("./trained_legal_ai")
model_name = "crumb/nano-mistral" tokenizer.save_pretrained("./trained_legal_ai")
tokenizer = AutoTokenizer.from_pretrained(model_name) with open("./trained_legal_ai/source_mapper.json", "w") as f:
tokenizer.pad_token = tokenizer.eos_token json.dump(source_mapper.idx_to_source, f)
# Przygotowanie danych print("Trening zakończony i model zapisany!")
catalog_path = "file_catalog.json"
data = prepare_dataset("files", catalog_path, source_mapper)
if not data: def generate_response(self, prompt, confidence_threshold=0.65):
print("\nBrak danych do treningu!") # Ładowanie modelu
return model = self.LegalModel.from_pretrained("./trained_legal_ai",
config=AutoModelForCausalLM.from_pretrained("crumb/nano-mistral").config)
tokenizer = AutoTokenizer.from_pretrained("./trained_legal_ai")
model.to(self.device)
#dataset = Dataset.from_list(data) # Ładowanie mapowania źródeł
dataset = Dataset.from_dict({k: [d[k] for d in data] for k in data[0]}) with open("./trained_legal_ai/source_mapper.json", "r") as f:
source_mapper = json.load(f)
# Przygotowanie wejścia
def tokenize_function(examples): inputs = tokenizer(
tokenized = tokenizer( f"[PROMPT] {prompt} [RESPONSE]",
examples["text"], return_tensors="pt",
truncation=True,
padding="max_length",
max_length=512, max_length=512,
return_tensors="pt" truncation=True
) ).to(self.device)
return {
"input_ids": tokenized["input_ids"].squeeze(),
"attention_mask": tokenized["attention_mask"].squeeze(),
"labels": tokenized["input_ids"].squeeze().clone(),
"source_idx": examples["source_idx"] # Dodano bez konwersji do tensora
}
tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=16) # Generacja
with torch.no_grad():
outputs = model.generate(
input_ids=inputs.input_ids,
attention_mask=inputs.attention_mask,
max_length=512,
do_sample=True,
temperature=0.7,
top_k=50,
pad_token_id=tokenizer.eos_token_id,
output_scores=True,
return_dict_in_generate=True
)
model = CustomModel(model_name, AutoModelForCausalLM.from_pretrained(model_name).config) # Analiza wyników
model.source_mapper = source_mapper full_text = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") confidence = torch.sigmoid(outputs.scores[-1][:, tokenizer.eos_token_id]).item()
model.to(device)
training_args = TrainingArguments( # Ekstrakcja i weryfikacja źródeł
output_dir="./results", citations = list(set(re.findall(r"Art\.\s*\d+[a-z]*", full_text)))
num_train_epochs=3, verified = [c for c in citations if any(c in s for s in source_mapper.values())]
per_device_train_batch_size=2,
gradient_accumulation_steps=4,
learning_rate=2e-5,
fp16=torch.cuda.is_available(),
logging_steps=10,
save_strategy="steps",
save_steps=1000,
report_to="none",
remove_unused_columns=False
)
trainer = Trainer( if confidence < confidence_threshold or not verified:
model=model, return "Nie mogę udzielić jednoznacznej odpowiedzi na podstawie dostępnych danych."
args=training_args, else:
train_dataset=tokenized_dataset, return f"{full_text}\n\nPotwierdzone źródła: {', '.join(verified)}"
data_collator=CustomDataCollator(tokenizer=tokenizer, mlm=False)
)
print("\nRozpoczęcie treningu...")
trainer.train()
if __name__ == "__main__": if __name__ == "__main__":
main() legal_ai = LegalAITrainer()
# Etap 1: Trening
legal_ai.train(
model_name="crumb/nano-mistral",
data_dir="./legal_docs",
catalog_path="./catalog.json"
)
# Etap 2: Testowanie
test_prompt = "Ile dni urlopu przysługuje po 5 latach pracy w pełnym wymiarze?"
print(legal_ai.generate_response(test_prompt))