mod gpt
This commit is contained in:
parent
8ee5f5cbd9
commit
f846ddeabe
21
gpt.py
21
gpt.py
|
|
@ -44,7 +44,6 @@ def prepare_dataset_from_file(file_path):
|
||||||
|
|
||||||
return formatted_articles
|
return formatted_articles
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
# Inicjalizacja tokenizera
|
# Inicjalizacja tokenizera
|
||||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
||||||
|
|
@ -61,17 +60,17 @@ def main():
|
||||||
examples["text"],
|
examples["text"],
|
||||||
truncation=True,
|
truncation=True,
|
||||||
padding="max_length",
|
padding="max_length",
|
||||||
max_length=256, # Zwiększono dla dłuższych artykułów
|
max_length=2048, # Zwiększono dla dłuższych artykułów
|
||||||
return_tensors="pt"
|
return_tensors="pt"
|
||||||
)
|
)
|
||||||
tokenized["labels"] = tokenized["input_ids"].clone()
|
tokenized["labels"] = tokenized["input_ids"].clone()
|
||||||
return tokenized
|
return tokenized
|
||||||
|
|
||||||
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
tokenized_dataset = dataset.map(tokenize_function, batched=True, remove_columns=dataset.column_names)
|
||||||
|
|
||||||
# Model i data collator
|
# Model i data collator
|
||||||
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
||||||
model.resize_token_embeddings(len(tokenizer), mean_resizing=False)
|
model.resize_token_embeddings(len(tokenizer))
|
||||||
|
|
||||||
data_collator = DataCollatorForLanguageModeling(
|
data_collator = DataCollatorForLanguageModeling(
|
||||||
tokenizer=tokenizer,
|
tokenizer=tokenizer,
|
||||||
|
|
@ -81,12 +80,17 @@ def main():
|
||||||
# Konfiguracja treningu
|
# Konfiguracja treningu
|
||||||
training_args = TrainingArguments(
|
training_args = TrainingArguments(
|
||||||
output_dir="./results",
|
output_dir="./results",
|
||||||
num_train_epochs=8, # Zwiększono liczbę epok
|
num_train_epochs=15, # Zwiększono liczbę epok
|
||||||
per_device_train_batch_size=2,
|
per_device_train_batch_size=4, # Zwiększono rozmiar batcha
|
||||||
learning_rate=5e-5,
|
learning_rate=2e-5, # Zmniejszono learning rate
|
||||||
|
weight_decay=0.01, # Dodano weight decay
|
||||||
logging_steps=10,
|
logging_steps=10,
|
||||||
|
save_steps=500, # Dodano zapisywanie modelu co 500 kroków
|
||||||
|
eval_steps=500, # Dodano ewaluację co 500 kroków
|
||||||
|
evaluation_strategy="steps",
|
||||||
|
load_best_model_at_end=True, # Ładowanie najlepszego modelu na końcu
|
||||||
report_to="none",
|
report_to="none",
|
||||||
save_strategy="no"
|
save_total_limit=2, # Ograniczenie liczby zapisywanych checkpointów
|
||||||
)
|
)
|
||||||
|
|
||||||
# Trainer
|
# Trainer
|
||||||
|
|
@ -94,6 +98,7 @@ def main():
|
||||||
model=model,
|
model=model,
|
||||||
args=training_args,
|
args=training_args,
|
||||||
train_dataset=tokenized_dataset,
|
train_dataset=tokenized_dataset,
|
||||||
|
eval_dataset=tokenized_dataset, # Używamy tego samego zbioru do ewaluacji
|
||||||
data_collator=data_collator
|
data_collator=data_collator
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
|
||||||
2
test.py
2
test.py
|
|
@ -17,6 +17,6 @@ def generate_response(prompt, max_length=1000):
|
||||||
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||||
return response
|
return response
|
||||||
|
|
||||||
prompt = "Zacytuj art. 154 kodeksu pracy"
|
prompt = "Jak brzmi art. 154 kodeksu pracy"
|
||||||
response = generate_response(prompt)
|
response = generate_response(prompt)
|
||||||
print(response)
|
print(response)
|
||||||
Loading…
Reference in New Issue