ably.do/allegro.py

122 lines
3.6 KiB
Python
Raw Normal View History

2025-02-26 05:37:10 -05:00
import os
2025-02-28 15:26:21 -05:00
os.environ["TOKENIZERS_PARALLELISM"] = "false"
2025-02-26 05:37:10 -05:00
import torch
2025-02-28 15:26:21 -05:00
import faiss
2025-02-28 15:02:51 -05:00
from weaviate.connect import ConnectionParams
2025-02-28 15:02:18 -05:00
import weaviate
2025-02-28 15:26:21 -05:00
from sentence_transformers import SentenceTransformer
from datasets import Dataset
from peft import LoraConfig, get_peft_model
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorForLanguageModeling
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
2025-02-26 05:37:10 -05:00
2025-02-28 14:59:54 -05:00
# 1⃣ Połączenie z Weaviate
2025-02-28 15:02:18 -05:00
client = weaviate.WeaviateClient(
2025-02-28 14:59:54 -05:00
connection_params=ConnectionParams.from_params(
2025-02-28 14:54:02 -05:00
http_host="weaviate",
http_port=8080,
http_secure=False,
grpc_host="weaviate",
grpc_port=50051,
grpc_secure=False,
)
2025-02-28 13:47:09 -05:00
)
2025-02-28 15:05:32 -05:00
client.connect()
2025-02-28 13:47:09 -05:00
2025-02-28 15:17:08 -05:00
collection = client.collections.get("Document")
2025-02-28 14:59:54 -05:00
# 2⃣ Pobranie dokumentów z Weaviate
def fetch_documents():
2025-02-28 15:17:08 -05:00
response = collection.query.fetch_objects()
2025-02-28 14:59:54 -05:00
documents = []
2025-02-28 15:16:27 -05:00
for o in response.objects:
2025-02-28 15:13:22 -05:00
file_name = o.properties.get("fileName", "unknown_file")
content = o.properties.get("content", "")
if content:
documents.append(f"fileName: {file_name}, content: {content}")
print(f"fileName: {file_name}")
return documents
2025-02-28 15:09:05 -05:00
#return documents
2025-02-28 13:47:09 -05:00
2025-02-28 15:19:50 -05:00
documents = fetch_documents()
2025-02-28 13:47:09 -05:00
2025-02-28 15:26:21 -05:00
embeddings = embed_model.encode(documents)
2025-02-28 13:47:09 -05:00
2025-02-28 15:26:21 -05:00
dim = embeddings.shape[1]
index = faiss.IndexFlatL2(dim)
index.add(np.array(embeddings, dtype=np.float32))
2025-02-26 05:37:10 -05:00
2025-02-28 14:59:54 -05:00
def create_training_data():
2025-02-28 15:26:21 -05:00
data = {
"text": documents,
"embedding": embeddings.tolist()
}
return Dataset.from_dict(data)
2025-02-28 14:59:54 -05:00
dataset = create_training_data()
2025-02-28 15:26:21 -05:00
2025-02-28 13:47:09 -05:00
split_dataset = dataset.train_test_split(test_size=0.25)
train_dataset = split_dataset["train"]
eval_dataset = split_dataset["test"]
2025-02-28 15:26:21 -05:00
device = "cuda" if torch.cuda.is_available() else "cpu"
model_name = "allegro/multislav-5lang"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
lora_config = LoraConfig(
r=8, lora_alpha=32, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM"
)
model = get_peft_model(model, lora_config)
max_length = 384
2025-02-28 13:47:09 -05:00
def tokenize_function(examples):
return tokenizer(
examples["text"],
padding="max_length",
truncation=True,
2025-02-28 15:26:21 -05:00
max_length=max_length
2025-02-26 05:37:10 -05:00
)
2025-02-28 13:47:09 -05:00
tokenized_train = train_dataset.map(tokenize_function, batched=True)
tokenized_eval = eval_dataset.map(tokenize_function, batched=True)
training_args = TrainingArguments(
output_dir="./results",
2025-02-28 15:26:21 -05:00
eval_strategy="steps", # Ewaluacja co określoną liczbę kroków
eval_steps=500, # Ewaluacja co 500 kroków
save_strategy="steps", # Zapis modelu co określoną liczbę kroków
save_steps=500, # Zapis modelu co 500 kroków
learning_rate=1e-5,
2025-02-28 14:59:54 -05:00
per_device_train_batch_size=2,
per_device_eval_batch_size=2,
num_train_epochs=16,
2025-02-28 13:47:09 -05:00
weight_decay=0.01,
2025-02-28 15:26:21 -05:00
load_best_model_at_end=True, # Wczytaj najlepszy model na końcu
metric_for_best_model="loss", # Kryterium wyboru najlepszego modelu
greater_is_better=False, # Niższy loss = lepszy model
2025-02-28 13:47:09 -05:00
)
2025-02-28 15:26:21 -05:00
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False
)
2025-02-28 13:47:09 -05:00
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_train,
2025-02-28 15:26:21 -05:00
eval_dataset=tokenized_eval, # Dodany zestaw ewaluacyjny
2025-02-28 13:47:09 -05:00
data_collator=data_collator,
)
trainer.train()
2025-02-28 15:26:21 -05:00
model.save_pretrained("./trained_model/gemma")
tokenizer.save_pretrained("./trained_model/gemma")
2025-02-26 05:37:10 -05:00
2025-02-28 15:19:50 -05:00
print("✅ Model został wytrenowany i zapisany!")