ably.do/allegro.py

102 lines
2.8 KiB
Python
Raw Normal View History

2025-02-26 05:37:10 -05:00
import os
2025-02-28 13:47:09 -05:00
os.environ["TOKENIZERS_PARALLELISM"] = "false"
2025-02-26 05:37:10 -05:00
import torch
2025-02-28 13:47:09 -05:00
import weaviate
2025-02-28 14:58:24 -05:00
from weaviate.classes.config import Property, DataType, Configure
from weaviate.classes.query import Query
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorForSeq2Seq
from datasets import Dataset
2025-02-26 05:37:10 -05:00
2025-02-28 14:58:24 -05:00
# 1⃣ Połączenie z bazą Weaviate
client = weaviate.WeaviateClient(
connection_params=weaviate.ConnectionParams.from_params(
2025-02-28 14:54:02 -05:00
http_host="weaviate",
http_port=8080,
http_secure=False,
grpc_host="weaviate",
grpc_port=50051,
grpc_secure=False,
)
2025-02-28 13:47:09 -05:00
)
2025-02-28 14:58:24 -05:00
# 2⃣ Pobranie dokumentów z bazy Weaviate
collection_name = "Documents"
query = Query(collection_name).limit(1000)
result = client.query.run(query)
2025-02-28 13:47:09 -05:00
2025-02-28 14:58:24 -05:00
documents = []
file_names = []
2025-02-28 13:47:09 -05:00
2025-02-28 14:58:24 -05:00
for item in result[collection_name]['objects']:
documents.append(item['properties']['content'])
file_names.append(item['properties']['fileName'])
2025-02-28 13:47:09 -05:00
2025-02-28 14:58:24 -05:00
# 3⃣ Tworzenie datasetu
training_data = {
"text": documents,
"file_name": file_names
}
dataset = Dataset.from_dict(training_data)
2025-02-26 05:37:10 -05:00
2025-02-28 14:58:24 -05:00
# Podział na zestaw treningowy i ewaluacyjny
2025-02-28 13:47:09 -05:00
split_dataset = dataset.train_test_split(test_size=0.25)
train_dataset = split_dataset["train"]
eval_dataset = split_dataset["test"]
2025-02-28 14:58:24 -05:00
# 4⃣ Ładowanie modelu Multislav
2025-02-28 13:47:09 -05:00
model_name = "allegro/multislav-5lang"
2025-02-28 14:58:24 -05:00
device = "cuda" if torch.cuda.is_available() else "cpu"
2025-02-28 13:47:09 -05:00
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
2025-02-28 14:58:24 -05:00
# 5⃣ Tokenizacja
max_length = 512
2025-02-28 13:47:09 -05:00
def tokenize_function(examples):
return tokenizer(
examples["text"],
padding="max_length",
truncation=True,
max_length=max_length
2025-02-26 05:37:10 -05:00
)
2025-02-28 13:47:09 -05:00
tokenized_train = train_dataset.map(tokenize_function, batched=True)
tokenized_eval = eval_dataset.map(tokenize_function, batched=True)
2025-02-28 14:58:24 -05:00
# 6⃣ Parametry treningu
2025-02-28 13:47:09 -05:00
training_args = TrainingArguments(
output_dir="./results",
2025-02-28 14:58:24 -05:00
evaluation_strategy="steps",
2025-02-28 13:47:09 -05:00
eval_steps=500,
save_strategy="steps",
save_steps=500,
2025-02-28 14:58:24 -05:00
learning_rate=2e-5,
per_device_train_batch_size=4,
per_device_eval_batch_size=4,
num_train_epochs=10,
2025-02-28 13:47:09 -05:00
weight_decay=0.01,
load_best_model_at_end=True,
metric_for_best_model="loss",
greater_is_better=False,
)
2025-02-28 14:58:24 -05:00
# 7⃣ Data Collator
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model)
2025-02-28 13:47:09 -05:00
2025-02-28 14:58:24 -05:00
# 8⃣ Trening
2025-02-28 13:47:09 -05:00
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_train,
eval_dataset=tokenized_eval,
data_collator=data_collator,
)
trainer.train()
2025-02-28 14:58:24 -05:00
# 9⃣ Zapis modelu
model.save_pretrained("./trained_model/multislav")
tokenizer.save_pretrained("./trained_model/multislav")
2025-02-26 05:37:10 -05:00
2025-02-28 13:47:09 -05:00
print("✅ Model został wytrenowany i zapisany!")