ably.do/hft.py

292 lines
10 KiB
Python
Raw Normal View History

2025-02-25 04:03:59 -05:00
import os
import torch
import torch.nn as nn
2025-02-25 13:32:32 -05:00
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
2025-02-25 06:25:02 -05:00
from datasets import Dataset
2025-02-25 04:03:59 -05:00
from PIL import Image
import re
import pytesseract
import docx2txt
import PyPDF2
2025-02-25 06:21:39 -05:00
import json
2025-02-25 07:34:04 -05:00
from collections import defaultdict
2025-02-25 04:45:37 -05:00
from huggingface_hub import login
2025-02-25 11:24:26 -05:00
os.environ['TORCH_USE_CUDA_DSA'] = '1'
2025-02-25 07:17:17 -05:00
os.environ["TOKENIZERS_PARALLELISM"] = "false"
2025-02-25 04:45:37 -05:00
2025-02-25 11:24:26 -05:00
login(token="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")
2025-02-25 07:34:04 -05:00
class SourceMapper:
def __init__(self):
2025-02-25 09:20:55 -05:00
self.source_to_idx = defaultdict(lambda: len(self.source_to_idx))
self.idx_to_source = {}
2025-02-25 07:34:04 -05:00
def add_source(self, source):
if source and source not in self.source_to_idx:
2025-02-25 09:20:55 -05:00
idx = self.source_to_idx[source]
2025-02-25 07:34:04 -05:00
self.idx_to_source[idx] = source
def get_idx(self, source):
2025-02-25 09:20:55 -05:00
return self.source_to_idx[source] if source else -1
2025-02-25 07:34:04 -05:00
def get_source(self, idx):
return self.idx_to_source.get(idx, "Unknown")
2025-02-25 04:03:59 -05:00
def load_file_catalog(catalog_path):
with open(catalog_path, 'r', encoding='utf-8') as file:
return json.load(file)
def identify_legal_document(filename, file_catalog):
2025-02-25 07:34:04 -05:00
return file_catalog.get(filename, "Opracowanie własne")
2025-02-25 04:03:59 -05:00
def extract_text_from_file(file_path):
_, ext = os.path.splitext(file_path)
ext = ext.lower()
if ext in ['.txt', '.md']:
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
elif ext == '.pdf':
text = ""
with open(file_path, 'rb') as file:
reader = PyPDF2.PdfReader(file)
for page in reader.pages:
2025-02-25 09:20:55 -05:00
text += page.extract_text()
2025-02-25 04:03:59 -05:00
return text
elif ext in ['.doc', '.docx']:
return docx2txt.process(file_path)
elif ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
return pytesseract.image_to_string(Image.open(file_path))
else:
return ""
2025-02-25 07:34:04 -05:00
def prepare_dataset(directory, catalog_path, source_mapper):
2025-02-25 04:03:59 -05:00
file_catalog = load_file_catalog(catalog_path)
data = []
2025-02-25 07:34:04 -05:00
2025-02-25 04:03:59 -05:00
for root, _, files in os.walk(directory):
for file in files:
file_path = os.path.join(root, file)
text = extract_text_from_file(file_path)
2025-02-25 07:34:04 -05:00
if not text:
continue
doc_type = identify_legal_document(file, file_catalog)
if doc_type != "Opracowanie własne":
2025-02-25 09:20:55 -05:00
articles = re.split(r'(Art\.\s+\d+[\.\s])', text)
2025-02-25 07:34:04 -05:00
for i in range(1, len(articles), 2):
article_number = articles[i].strip()
article_content = articles[i+1].strip() if i+1 < len(articles) else ""
source = f"{doc_type}, {article_number}"
source_mapper.add_source(source)
data.append({
"text": f"{article_number} {article_content}",
"source_idx": source_mapper.get_idx(source)
})
else:
chunks = [text[i:i+512] for i in range(0, len(text), 512)]
for chunk in chunks:
data.append({
"text": chunk,
2025-02-25 09:20:55 -05:00
"source_idx": -1 # Brak źródła
2025-02-25 07:34:04 -05:00
})
2025-02-25 04:03:59 -05:00
return data
def tokenize_function(examples):
2025-02-25 07:34:04 -05:00
tokenized = tokenizer(
examples["text"],
truncation=True,
padding="max_length",
max_length=512,
return_tensors="pt"
)
tokenized["labels"] = tokenized["input_ids"].clone()
2025-02-25 07:42:51 -05:00
tokenized["source_idx"] = examples["source_idx"]
2025-02-25 07:34:04 -05:00
return tokenized
2025-02-25 04:03:59 -05:00
2025-02-25 07:40:23 -05:00
def custom_collate_fn(batch):
2025-02-25 13:32:32 -05:00
input_ids = torch.stack([torch.tensor(b["input_ids"]) for b in batch])
attention_mask = torch.stack([torch.tensor(b["attention_mask"]) for b in batch])
labels = torch.stack([torch.tensor(b["labels"]) for b in batch])
source_idx = torch.tensor([b.get("source_idx", -1) for b in batch], dtype=torch.long)
#print("source_idx shape:", source_idx.shape) # Debugowanie
2025-02-25 10:53:09 -05:00
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels, "source_idx": source_idx}
2025-02-25 07:40:23 -05:00
2025-02-25 14:01:50 -05:00
# Zmodyfikowana klasa CustomModel
class CustomModel(AutoModelForCausalLM): # 🔵 Zmiana dziedziczenia
2025-02-25 11:06:58 -05:00
def __init__(self, model_name, config):
2025-02-25 14:01:50 -05:00
super().__init__(config) # 🔵 Inicjalizacja klasy bazowej
self.model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
2025-02-25 07:34:04 -05:00
self.source_embedding = nn.Embedding(
2025-02-25 11:11:05 -05:00
num_embeddings=1000,
2025-02-25 07:34:04 -05:00
embedding_dim=config.hidden_size,
2025-02-25 09:20:55 -05:00
padding_idx=-1
2025-02-25 07:34:04 -05:00
)
2025-02-25 10:53:09 -05:00
def forward(self, input_ids=None, attention_mask=None, labels=None, source_idx=None, **kwargs):
2025-02-25 09:20:55 -05:00
if source_idx is not None:
2025-02-25 11:24:26 -05:00
source_idx = torch.clamp(source_idx, 0, self.source_embedding.num_embeddings - 1)
2025-02-25 11:16:14 -05:00
source_embeds = self.source_embedding(source_idx).unsqueeze(1).expand(-1, input_ids.size(1), -1)
2025-02-25 14:01:50 -05:00
inputs_embeds = self.model.get_input_embeddings()(input_ids) + source_embeds
return self.model(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels, **kwargs)
return self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels, **kwargs)
# 🔵 Dodanie metody generate
def generate(self, *args, **kwargs):
return self.model.generate(*args, **kwargs)
2025-02-25 04:03:59 -05:00
2025-02-25 09:20:55 -05:00
class CustomTrainer(Trainer):
2025-02-25 11:02:20 -05:00
def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
2025-02-25 09:20:55 -05:00
labels = inputs.pop("labels")
2025-02-25 10:56:22 -05:00
source_idx = inputs.pop("source_idx", None)
2025-02-25 10:07:46 -05:00
outputs = model(**inputs, labels=labels, source_idx=source_idx)
2025-02-25 10:56:22 -05:00
loss = outputs.loss
return (loss, outputs) if return_outputs else loss
2025-02-25 09:20:55 -05:00
# Inicjalizacja komponentów
2025-02-25 07:34:04 -05:00
source_mapper = SourceMapper()
2025-02-25 11:11:05 -05:00
model_name = "crumb/nano-mistral"
2025-02-25 04:03:59 -05:00
tokenizer = AutoTokenizer.from_pretrained(model_name)
2025-02-25 10:53:09 -05:00
tokenizer.pad_token = tokenizer.eos_token
2025-02-25 04:03:59 -05:00
2025-02-25 09:20:55 -05:00
# Przygotowanie danych
catalog_path = "file_catalog.json"
data = prepare_dataset("files", catalog_path, source_mapper)
2025-02-25 06:25:02 -05:00
dataset = Dataset.from_list(data)
2025-02-25 09:22:15 -05:00
tokenized_dataset = dataset.map(tokenize_function, batched=True, batch_size=8)
2025-02-25 07:34:04 -05:00
2025-02-25 09:20:55 -05:00
# Inicjalizacja modelu
2025-02-25 08:46:02 -05:00
config = AutoModelForCausalLM.from_pretrained(model_name).config
2025-02-25 13:32:32 -05:00
#print("Vocabulary size:", config.vocab_size)
2025-02-25 11:06:58 -05:00
model = CustomModel(model_name, config)
2025-02-25 13:33:18 -05:00
#model.to("cpu") # Zmienione na CPU dla debugowania
2025-02-25 04:03:59 -05:00
2025-02-25 09:20:55 -05:00
# Konfiguracja treningu
2025-02-25 04:03:59 -05:00
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
2025-02-25 09:20:55 -05:00
per_device_train_batch_size=2,
gradient_accumulation_steps=4,
2025-02-25 07:34:04 -05:00
learning_rate=2e-5,
2025-02-25 13:32:32 -05:00
fp16=False, # Wyłączone dla CPU
2025-02-25 11:11:05 -05:00
logging_steps=1,
logging_dir="./logs",
2025-02-25 07:34:04 -05:00
save_strategy="steps",
2025-02-25 09:20:55 -05:00
save_steps=1000,
2025-02-25 11:31:03 -05:00
logging_strategy="no",
2025-02-25 13:32:32 -05:00
report_to="none",
2025-02-25 04:03:59 -05:00
)
2025-02-25 09:20:55 -05:00
# Trening
trainer = CustomTrainer(
2025-02-25 04:03:59 -05:00
model=model,
args=training_args,
2025-02-25 06:32:03 -05:00
train_dataset=tokenized_dataset,
2025-02-25 11:11:05 -05:00
data_collator=custom_collate_fn,
2025-02-25 04:03:59 -05:00
)
trainer.train()
2025-02-25 13:32:32 -05:00
# Utwórz katalog do zapisu modelu
save_directory = "./trained_model/ably.do/hse"
os.makedirs(save_directory, exist_ok=True)
# 1. Zapisz wagę modelu
torch.save(model.state_dict(), os.path.join(save_directory, "hse-nano-mistral.bin"))
# 2. Zapisz tokenizer
tokenizer.save_pretrained(save_directory)
# 3. Zapisz mapowanie źródeł
source_mapper_data = {
"source_to_idx": dict(source_mapper.source_to_idx),
"idx_to_source": source_mapper.idx_to_source
}
with open(os.path.join(save_directory, "source_mapper.json"), 'w') as f:
json.dump(source_mapper_data, f)
2025-02-25 13:19:17 -05:00
2025-02-25 13:32:32 -05:00
# 4. Zapisz konfigurację modelu (opcjonalnie, ale zalecane)
2025-02-25 13:43:37 -05:00
model.base_model.config.save_pretrained(save_directory)
2025-02-25 13:51:28 -05:00
# Funkcja generująca odpowiedź
def generate_answer_with_source(question, model, tokenizer, source_mapper, max_length=200):
device = next(model.parameters()).device
inputs = tokenizer(
question,
return_tensors="pt",
truncation=True,
max_length=512
).to(device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=max_length,
num_return_sequences=1,
return_dict_in_generate=True,
temperature=0.7,
top_p=0.9,
)
answer = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
# Ekstrakcja informacji o źródłach
article_matches = re.finditer(r'Art\.\s+\d+', answer)
sources = set()
for match in article_matches:
article_ref = match.group(0).strip()
for idx, source in source_mapper.idx_to_source.items():
if article_ref in source:
sources.add(source)
break
return {
"question": question,
"answer": answer,
"sources": list(sources) if sources else ["Opracowanie własne"],
"num_tokens": len(outputs.sequences[0])
}
# Przykładowe testy
test_cases = [
"Jaki jest wymiar urlopu wypoczynkowego?",
"Jakie są zasady bezpieczeństwa na budowie?",
"Wyjaśnij procedurę zwolnienia grupowego",
"Co reguluje ustawa o ochronie danych osobowych?",
"Jakie dokumenty są potrzebne do zawarcia umowy o pracę?"
2025-02-25 13:43:37 -05:00
]
2025-02-25 13:51:28 -05:00
print("\n\n🔴 🔴 🔴 ROZPOCZĘCIE TESTOWANIA MODELU 🔴 🔴 🔴")
for case in test_cases:
result = generate_answer_with_source(case, model, tokenizer, source_mapper)
print(f"\n🔷 Pytanie: {result['question']}")
print(f"🔷 Odpowiedź ({result['num_tokens']} tokenów):")
print(result['answer'])
print(f"🔷 Źródła: {', '.join(result['sources'])}")
print("-"*80)
# Funkcja generująca odpowiedź
def generate_answer(question, max_length=200):
model.eval()
inputs = tokenizer(question, return_tensors="pt", truncation=True, max_length=512).to(device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=max_length,
num_return_sequences=1,
return_dict_in_generate=True
)
answer = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
return answer
# Utwórz katalog do zapisu modelu
save_directory = "./trained_model/ably.do/hse"
os.makedirs(save_directory, exist_ok=True)