Compare commits
14 Commits
main/webui
...
master
| Author | SHA1 | Date |
|---|---|---|
|
|
61fbc79211 | |
|
|
d6e1f45686 | |
|
|
9bbe7188ca | |
|
|
3d477870ad | |
|
|
a5e5401548 | |
|
|
4f486f021b | |
|
|
d9541a9a28 | |
|
|
e3a94fa5ae | |
|
|
cd5fab2206 | |
|
|
a47fc31bda | |
|
|
2bc3384235 | |
|
|
049b4703a8 | |
|
|
4315cef3c7 | |
|
|
9f367c2fa4 |
122
allegro.py
122
allegro.py
|
|
@ -1,119 +1,9 @@
|
||||||
import os
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
||||||
import re
|
|
||||||
import torch
|
|
||||||
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForLanguageModeling
|
|
||||||
from datasets import Dataset
|
|
||||||
|
|
||||||
# Konfiguracja
|
model = AutoModelForSeq2SeqLM.from_pretrained("allegro/multislav-5lang")
|
||||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
tokenizer = AutoTokenizer.from_pretrained("allegro/multislav-5lang")
|
||||||
MODEL_NAME = "allegro/herbert-base-cased"
|
|
||||||
SPECIAL_TOKENS = ["[CITATION_START]", "[CITATION_END]"]
|
|
||||||
TEXT_FILE_PATH = "./docs/kodekspracy.txt" # Zmień na właściwą ścieżkę
|
|
||||||
|
|
||||||
def prepare_dataset_from_file(file_path):
|
model.save_pretrained("./models/ably")
|
||||||
with open(file_path, 'r', encoding='utf-8') as f:
|
tokenizer.save_pretrained("./models/ably")
|
||||||
text = f.read()
|
|
||||||
|
|
||||||
articles = re.findall(r'Art\.\s*\d+[a-z]*\..*?(?=\s*Art\.\s*\d+[a-z]*\.|\Z)', text, flags=re.DOTALL)
|
print("✅ Model został wytrenowany i zapisany!")
|
||||||
|
|
||||||
formatted_articles = []
|
|
||||||
for article in articles:
|
|
||||||
article = ' '.join(article.strip().split())
|
|
||||||
|
|
||||||
art_match = re.match(r'Art\.\s*(\d+[a-z]*)\.?\s*(.*)', article, re.DOTALL)
|
|
||||||
if art_match:
|
|
||||||
art_number = art_match.group(1)
|
|
||||||
art_text = art_match.group(2)
|
|
||||||
|
|
||||||
paragraphs = re.split(r'(§\s*\d+\.)', art_text)
|
|
||||||
if len(paragraphs) > 1:
|
|
||||||
formatted_paragraphs = []
|
|
||||||
for i in range(1, len(paragraphs), 2):
|
|
||||||
para_num = paragraphs[i].strip()
|
|
||||||
para_text = paragraphs[i+1].strip()
|
|
||||||
formatted_paragraphs.append(f"{para_num} {para_text}")
|
|
||||||
formatted = f"[CITATION_START] Kodeks Pracy, Art. {art_number} [CITATION_END]\n" + "\n".join(formatted_paragraphs)
|
|
||||||
else:
|
|
||||||
formatted = f"[CITATION_START] Kodeks Pracy, Art. {art_number} [CITATION_END] {art_text}"
|
|
||||||
|
|
||||||
formatted_articles.append({"text": formatted})
|
|
||||||
|
|
||||||
questions = [
|
|
||||||
f"Zacytuj artykuł {art_number} Kodeksu pracy.",
|
|
||||||
f"Co mówi artykuł {art_number} Kodeksu pracy?",
|
|
||||||
f"Podaj treść artykułu {art_number} Kodeksu pracy."
|
|
||||||
]
|
|
||||||
for question in questions:
|
|
||||||
formatted_articles.append({"text": f"{question}\n{formatted}"})
|
|
||||||
|
|
||||||
return formatted_articles
|
|
||||||
|
|
||||||
def main():
|
|
||||||
# Inicjalizacja tokenizera
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
|
||||||
tokenizer.pad_token = tokenizer.eos_token
|
|
||||||
tokenizer.add_special_tokens({"additional_special_tokens": SPECIAL_TOKENS})
|
|
||||||
|
|
||||||
print(f"Pad token: {tokenizer.pad_token}")
|
|
||||||
print(f"Pad token ID: {tokenizer.pad_token_id}")
|
|
||||||
|
|
||||||
# Przygotowanie danych
|
|
||||||
data = prepare_dataset_from_file(TEXT_FILE_PATH)
|
|
||||||
dataset = Dataset.from_dict({"text": [d["text"] for d in data]})
|
|
||||||
|
|
||||||
# Tokenizacja
|
|
||||||
def tokenize_function(examples):
|
|
||||||
tokenized = tokenizer(
|
|
||||||
examples["text"],
|
|
||||||
truncation=True,
|
|
||||||
padding="max_length",
|
|
||||||
max_length=512,
|
|
||||||
return_tensors="pt"
|
|
||||||
)
|
|
||||||
tokenized["labels"] = tokenized["input_ids"].clone()
|
|
||||||
return tokenized
|
|
||||||
|
|
||||||
tokenized_dataset = dataset.map(tokenize_function, batched=True, remove_columns=dataset.column_names)
|
|
||||||
|
|
||||||
# Model i data collator
|
|
||||||
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
|
||||||
model.resize_token_embeddings(len(tokenizer))
|
|
||||||
model.config.pad_token_id = tokenizer.pad_token_id
|
|
||||||
|
|
||||||
data_collator = DataCollatorForLanguageModeling(
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
mlm=False
|
|
||||||
)
|
|
||||||
|
|
||||||
# Konfiguracja treningu
|
|
||||||
training_args = TrainingArguments(
|
|
||||||
output_dir="./results",
|
|
||||||
num_train_epochs=32,
|
|
||||||
per_device_train_batch_size=2,
|
|
||||||
learning_rate=1e-5,
|
|
||||||
logging_steps=10,
|
|
||||||
weight_decay=0.01,
|
|
||||||
report_to="none",
|
|
||||||
save_strategy="steps",
|
|
||||||
save_steps=500,
|
|
||||||
evaluation_strategy="steps",
|
|
||||||
eval_steps=500,
|
|
||||||
load_best_model_at_end=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Trainer
|
|
||||||
trainer = Trainer(
|
|
||||||
model=model,
|
|
||||||
args=training_args,
|
|
||||||
train_dataset=tokenized_dataset,
|
|
||||||
eval_dataset=tokenized_dataset,
|
|
||||||
data_collator=data_collator
|
|
||||||
)
|
|
||||||
|
|
||||||
print("Rozpoczęcie treningu...")
|
|
||||||
trainer.train()
|
|
||||||
trainer.save_model("./trained_model/allegro")
|
|
||||||
tokenizer.save_pretrained("./trained_model/allegro")
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
||||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
|
@ -0,0 +1,119 @@
|
||||||
|
import os
|
||||||
|
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import faiss
|
||||||
|
import numpy as np
|
||||||
|
from sentence_transformers import SentenceTransformer
|
||||||
|
from datasets import Dataset
|
||||||
|
from peft import LoraConfig, get_peft_model
|
||||||
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorForLanguageModeling
|
||||||
|
|
||||||
|
# 1️⃣ Inicjalizacja modelu do embeddingów
|
||||||
|
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
|
||||||
|
|
||||||
|
# 2️⃣ Dodanie dokumentów i embeddingów
|
||||||
|
def read_documents_from_file(file_path):
|
||||||
|
with open(file_path, 'r', encoding='utf-8') as file:
|
||||||
|
content = file.read()
|
||||||
|
articles = content.split('\n\n')
|
||||||
|
documents = []
|
||||||
|
for article in articles:
|
||||||
|
if article.strip().startswith('Art.'):
|
||||||
|
documents.append(article.strip())
|
||||||
|
return documents
|
||||||
|
#documents = [
|
||||||
|
# "Jak założyć firmę w Polsce?",
|
||||||
|
# "Jak rozliczyć podatek VAT?",
|
||||||
|
# "Procedura składania reklamacji w e-sklepie.",
|
||||||
|
# "Jakie dokumenty są potrzebne do rejestracji działalności?"
|
||||||
|
#]
|
||||||
|
file_path = './docs/kodekspracy.txt' # Zmień na właściwą ścieżkę
|
||||||
|
documents = read_documents_from_file(file_path)
|
||||||
|
embeddings = embed_model.encode(documents)
|
||||||
|
|
||||||
|
# 3️⃣ Inicjalizacja FAISS i dodanie wektorów
|
||||||
|
dim = embeddings.shape[1]
|
||||||
|
index = faiss.IndexFlatL2(dim)
|
||||||
|
index.add(np.array(embeddings, dtype=np.float32))
|
||||||
|
|
||||||
|
# 4️⃣ Przygotowanie danych treningowych
|
||||||
|
def create_training_data():
|
||||||
|
data = {
|
||||||
|
"text": documents,
|
||||||
|
"embedding": embeddings.tolist()
|
||||||
|
}
|
||||||
|
return Dataset.from_dict(data)
|
||||||
|
|
||||||
|
dataset = create_training_data()
|
||||||
|
|
||||||
|
# Podział danych na treningowe i ewaluacyjne
|
||||||
|
split_dataset = dataset.train_test_split(test_size=0.25)
|
||||||
|
train_dataset = split_dataset["train"]
|
||||||
|
eval_dataset = split_dataset["test"]
|
||||||
|
|
||||||
|
# 5️⃣ Ładowanie modelu Gemma 2B
|
||||||
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||||
|
model_name = "Lajonbot/vicuna-7b-v1.5-PL-lora_unload"
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16).to(device)
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||||
|
|
||||||
|
# 6️⃣ Konfiguracja LoRA
|
||||||
|
lora_config = LoraConfig(
|
||||||
|
r=8, lora_alpha=32, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM"
|
||||||
|
)
|
||||||
|
model = get_peft_model(model, lora_config)
|
||||||
|
|
||||||
|
# 7️⃣ Tokenizacja danych
|
||||||
|
max_length = 384
|
||||||
|
|
||||||
|
def tokenize_function(examples):
|
||||||
|
return tokenizer(
|
||||||
|
examples["text"],
|
||||||
|
padding="max_length",
|
||||||
|
truncation=True,
|
||||||
|
max_length=max_length
|
||||||
|
)
|
||||||
|
|
||||||
|
tokenized_train = train_dataset.map(tokenize_function, batched=True)
|
||||||
|
tokenized_eval = eval_dataset.map(tokenize_function, batched=True)
|
||||||
|
|
||||||
|
# 8️⃣ Parametry treningu
|
||||||
|
training_args = TrainingArguments(
|
||||||
|
output_dir="./results",
|
||||||
|
eval_strategy="steps", # Ewaluacja co określoną liczbę kroków
|
||||||
|
eval_steps=500, # Ewaluacja co 500 kroków
|
||||||
|
save_strategy="steps", # Zapis modelu co określoną liczbę kroków
|
||||||
|
save_steps=500, # Zapis modelu co 500 kroków
|
||||||
|
learning_rate=1e-5,
|
||||||
|
per_device_train_batch_size=2,
|
||||||
|
per_device_eval_batch_size=2,
|
||||||
|
num_train_epochs=16,
|
||||||
|
weight_decay=0.01,
|
||||||
|
load_best_model_at_end=True, # Wczytaj najlepszy model na końcu
|
||||||
|
metric_for_best_model="loss", # Kryterium wyboru najlepszego modelu
|
||||||
|
greater_is_better=False, # Niższy loss = lepszy model
|
||||||
|
)
|
||||||
|
|
||||||
|
# 9️⃣ Data Collator
|
||||||
|
data_collator = DataCollatorForLanguageModeling(
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
mlm=False
|
||||||
|
)
|
||||||
|
|
||||||
|
# 🔟 Trening modelu
|
||||||
|
trainer = Trainer(
|
||||||
|
model=model,
|
||||||
|
args=training_args,
|
||||||
|
train_dataset=tokenized_train,
|
||||||
|
eval_dataset=tokenized_eval, # Dodany zestaw ewaluacyjny
|
||||||
|
data_collator=data_collator,
|
||||||
|
)
|
||||||
|
|
||||||
|
trainer.train()
|
||||||
|
|
||||||
|
# 1️⃣1️⃣ Zapis modelu
|
||||||
|
model.save_pretrained("./models/herbert")
|
||||||
|
tokenizer.save_pretrained("./models/herbert")
|
||||||
|
|
||||||
|
print("✅ Model został wytrenowany i zapisany!")
|
||||||
Loading…
Reference in New Issue