Compare commits

...

34 Commits

Author SHA1 Message Date
l.gabrysiak 4bcb4f2f5a mod allegro 2025-02-28 22:14:00 +01:00
l.gabrysiak ad00842f91 mod allegro 2025-02-28 22:12:04 +01:00
l.gabrysiak 544d14bcc2 mod allegro 2025-02-28 22:09:57 +01:00
l.gabrysiak 57ca071282 mod 2025-02-28 22:06:39 +01:00
l.gabrysiak 967b10e153 mod allegro 2025-02-28 22:04:41 +01:00
l.gabrysiak 33eff363bc mod allegro 2025-02-28 21:44:24 +01:00
l.gabrysiak 447de65d83 mod allegro 2025-02-28 21:43:06 +01:00
l.gabrysiak 029662e9d1 tmp allegro 2025-02-28 21:41:23 +01:00
l.gabrysiak cd535b4fe3 mod allegro 2025-02-28 21:40:42 +01:00
l.gabrysiak 03faf77ee4 allegro mod 2025-02-28 21:34:32 +01:00
l.gabrysiak b895fda3b0 mod allegro 2025-02-28 21:28:33 +01:00
l.gabrysiak 12cef050a2 mod allegro 2025-02-28 21:26:21 +01:00
l.gabrysiak 04747ff17b mod allegro 2025-02-28 21:19:50 +01:00
l.gabrysiak 2d82373bc8 allegro mod 2025-02-28 21:17:08 +01:00
l.gabrysiak 5da854395e mod allegro 2025-02-28 21:16:27 +01:00
l.gabrysiak 74f912e7e3 mod allegro 2025-02-28 21:15:21 +01:00
l.gabrysiak 48df71addb mod allegro 2025-02-28 21:13:22 +01:00
l.gabrysiak 29d5fe0d58 mod allegro 2025-02-28 21:11:51 +01:00
l.gabrysiak 972031cb6d mod allegro 2025-02-28 21:10:33 +01:00
l.gabrysiak 87206a9462 mod allegro 2025-02-28 21:09:44 +01:00
l.gabrysiak 46e2c21cfd mod allegro 2025-02-28 21:09:05 +01:00
l.gabrysiak c5e4fc68c9 mod allegro 2025-02-28 21:06:23 +01:00
l.gabrysiak 9ef12dc7fd mod allegro 2025-02-28 21:05:32 +01:00
l.gabrysiak 8d74e3becb mod allegro 2025-02-28 21:05:03 +01:00
l.gabrysiak 4a264e38eb mod allegro 2025-02-28 21:02:51 +01:00
l.gabrysiak 3eb9d92846 mod allegro 2025-02-28 21:02:18 +01:00
l.gabrysiak 6a6546a03d mod allegro 2025-02-28 20:59:54 +01:00
l.gabrysiak 8e1f346f6e mod allegro 2025-02-28 20:58:24 +01:00
l.gabrysiak 4007d446e3 Mod allegro 2025-02-28 20:54:02 +01:00
l.gabrysiak 124e904c31 mod allegro 2025-02-28 20:45:55 +01:00
l.gabrysiak 2980d74be4 Dockerfile pip upgrade 2025-02-28 20:40:32 +01:00
l.gabrysiak 73b06efb33 dodanie sentence_transformers do pip install 2025-02-28 20:34:31 +01:00
l.gabrysiak b056db8282 modyfikacja requirements 2025-02-28 20:04:17 +01:00
l.gabrysiak 2d37e5c858 init 2025-02-28 19:47:09 +01:00
4 changed files with 59 additions and 118 deletions

31
Dockerfile Normal file
View File

@ -0,0 +1,31 @@
# Użyj oficjalnego obrazu Python jako bazowego
FROM --platform=linux/amd64 python:3.9-slim
# Ustaw katalog roboczy w kontenerze
WORKDIR /app
# Zainstaluj git
RUN apt-get update && apt-get install -y git nano wget curl iputils-ping
# Skopiuj pliki wymagań (jeśli istnieją) i zainstaluj zależności
COPY requirements.txt .
RUN pip install --upgrade pip
RUN pip install --no-cache-dir -r requirements.txt
# Skopiuj plik requirements.txt do kontenera
COPY requirements.txt .
# Zainstaluj zależności z pliku requirements.txt
RUN pip install --no-cache-dir -r requirements.txt
# Zainstaluj Tesseract OCR
RUN apt-get install -y tesseract-ocr
# Skopiuj kod źródłowy do kontenera
COPY . .
COPY entrypoint.sh /entrypoint.sh
RUN chmod +x /entrypoint.sh
# Uruchom aplikację
ENTRYPOINT ["/entrypoint.sh"]

View File

@ -1,119 +1,9 @@
import os
import re
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForLanguageModeling
from datasets import Dataset
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Konfiguracja
os.environ["TOKENIZERS_PARALLELISM"] = "false"
MODEL_NAME = "allegro/herbert-base-cased"
SPECIAL_TOKENS = ["[CITATION_START]", "[CITATION_END]"]
TEXT_FILE_PATH = "./docs/kodekspracy.txt" # Zmień na właściwą ścieżkę
model = AutoModelForSeq2SeqLM.from_pretrained("allegro/multislav-5lang")
tokenizer = AutoTokenizer.from_pretrained("allegro/multislav-5lang")
def prepare_dataset_from_file(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
text = f.read()
model.save_pretrained("./models/ably")
tokenizer.save_pretrained("./models/ably")
articles = re.findall(r'Art\.\s*\d+[a-z]*\..*?(?=\s*Art\.\s*\d+[a-z]*\.|\Z)', text, flags=re.DOTALL)
formatted_articles = []
for article in articles:
article = ' '.join(article.strip().split())
art_match = re.match(r'Art\.\s*(\d+[a-z]*)\.?\s*(.*)', article, re.DOTALL)
if art_match:
art_number = art_match.group(1)
art_text = art_match.group(2)
paragraphs = re.split(r'\s*\d+\.)', art_text)
if len(paragraphs) > 1:
formatted_paragraphs = []
for i in range(1, len(paragraphs), 2):
para_num = paragraphs[i].strip()
para_text = paragraphs[i+1].strip()
formatted_paragraphs.append(f"{para_num} {para_text}")
formatted = f"[CITATION_START] Kodeks Pracy, Art. {art_number} [CITATION_END]\n" + "\n".join(formatted_paragraphs)
else:
formatted = f"[CITATION_START] Kodeks Pracy, Art. {art_number} [CITATION_END] {art_text}"
formatted_articles.append({"text": formatted})
questions = [
f"Zacytuj artykuł {art_number} Kodeksu pracy.",
f"Co mówi artykuł {art_number} Kodeksu pracy?",
f"Podaj treść artykułu {art_number} Kodeksu pracy."
]
for question in questions:
formatted_articles.append({"text": f"{question}\n{formatted}"})
return formatted_articles
def main():
# Inicjalizacja tokenizera
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.add_special_tokens({"additional_special_tokens": SPECIAL_TOKENS})
print(f"Pad token: {tokenizer.pad_token}")
print(f"Pad token ID: {tokenizer.pad_token_id}")
# Przygotowanie danych
data = prepare_dataset_from_file(TEXT_FILE_PATH)
dataset = Dataset.from_dict({"text": [d["text"] for d in data]})
# Tokenizacja
def tokenize_function(examples):
tokenized = tokenizer(
examples["text"],
truncation=True,
padding="max_length",
max_length=512,
return_tensors="pt"
)
tokenized["labels"] = tokenized["input_ids"].clone()
return tokenized
tokenized_dataset = dataset.map(tokenize_function, batched=True, remove_columns=dataset.column_names)
# Model i data collator
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
model.resize_token_embeddings(len(tokenizer))
model.config.pad_token_id = tokenizer.pad_token_id
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False
)
# Konfiguracja treningu
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=32,
per_device_train_batch_size=2,
learning_rate=1e-5,
logging_steps=10,
weight_decay=0.01,
report_to="none",
save_strategy="steps",
save_steps=500,
evaluation_strategy="steps",
eval_steps=500,
load_best_model_at_end=True,
)
# Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset,
eval_dataset=tokenized_dataset,
data_collator=data_collator
)
print("Rozpoczęcie treningu...")
trainer.train()
trainer.save_model("./trained_model/allegro")
tokenizer.save_pretrained("./trained_model/allegro")
if __name__ == "__main__":
main()
print("✅ Model został wytrenowany i zapisany!")

12
entrypoint.sh Normal file
View File

@ -0,0 +1,12 @@
#!/bin/bash
git config --global credential.helper store
git config --global user.name ${GIT_USERNAME}
git config --global user.email ${GIT_EMAIL}
echo "https://${GIT_USERNAME}:${GIT_TOKEN}@${GIT_HOST}" > ~/.git-credentials
cd /home
git clone --single-branch --branch main/finetuning https://repo.pokash.pl/POKASH.PL/ably.do.git
python /app/${MODELNAME}.py
# Po zakończeniu głównego procesu, przejdź w tryb czuwania
echo "Główny proces zakończony. Przechodzę w tryb czuwania..."
tail -f /dev/null

View File

@ -4,5 +4,13 @@ datasets>=2.13.1
Pillow>=9.4.0
pytesseract>=0.3.10
python-docx>=0.8.11
PyPDF2>=3.0.1
huggingface-hub>=0.16.4
pypdf
PyPDF2
huggingface-hub>=0.16.4
numpy
peft
weaviate-client
sentence_transformers
faiss-gpu
sentencepiece
sacremoses