Compare commits
34 Commits
master
...
main/finet
| Author | SHA1 | Date |
|---|---|---|
|
|
4bcb4f2f5a | |
|
|
ad00842f91 | |
|
|
544d14bcc2 | |
|
|
57ca071282 | |
|
|
967b10e153 | |
|
|
33eff363bc | |
|
|
447de65d83 | |
|
|
029662e9d1 | |
|
|
cd535b4fe3 | |
|
|
03faf77ee4 | |
|
|
b895fda3b0 | |
|
|
12cef050a2 | |
|
|
04747ff17b | |
|
|
2d82373bc8 | |
|
|
5da854395e | |
|
|
74f912e7e3 | |
|
|
48df71addb | |
|
|
29d5fe0d58 | |
|
|
972031cb6d | |
|
|
87206a9462 | |
|
|
46e2c21cfd | |
|
|
c5e4fc68c9 | |
|
|
9ef12dc7fd | |
|
|
8d74e3becb | |
|
|
4a264e38eb | |
|
|
3eb9d92846 | |
|
|
6a6546a03d | |
|
|
8e1f346f6e | |
|
|
4007d446e3 | |
|
|
124e904c31 | |
|
|
2980d74be4 | |
|
|
73b06efb33 | |
|
|
b056db8282 | |
|
|
2d37e5c858 |
|
|
@ -0,0 +1,31 @@
|
||||||
|
# Użyj oficjalnego obrazu Python jako bazowego
|
||||||
|
FROM --platform=linux/amd64 python:3.9-slim
|
||||||
|
|
||||||
|
# Ustaw katalog roboczy w kontenerze
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
# Zainstaluj git
|
||||||
|
RUN apt-get update && apt-get install -y git nano wget curl iputils-ping
|
||||||
|
|
||||||
|
# Skopiuj pliki wymagań (jeśli istnieją) i zainstaluj zależności
|
||||||
|
COPY requirements.txt .
|
||||||
|
RUN pip install --upgrade pip
|
||||||
|
RUN pip install --no-cache-dir -r requirements.txt
|
||||||
|
|
||||||
|
# Skopiuj plik requirements.txt do kontenera
|
||||||
|
COPY requirements.txt .
|
||||||
|
|
||||||
|
# Zainstaluj zależności z pliku requirements.txt
|
||||||
|
RUN pip install --no-cache-dir -r requirements.txt
|
||||||
|
|
||||||
|
# Zainstaluj Tesseract OCR
|
||||||
|
RUN apt-get install -y tesseract-ocr
|
||||||
|
|
||||||
|
# Skopiuj kod źródłowy do kontenera
|
||||||
|
COPY . .
|
||||||
|
COPY entrypoint.sh /entrypoint.sh
|
||||||
|
|
||||||
|
RUN chmod +x /entrypoint.sh
|
||||||
|
|
||||||
|
# Uruchom aplikację
|
||||||
|
ENTRYPOINT ["/entrypoint.sh"]
|
||||||
122
allegro.py
122
allegro.py
|
|
@ -1,119 +1,9 @@
|
||||||
import os
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
||||||
import re
|
|
||||||
import torch
|
|
||||||
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForLanguageModeling
|
|
||||||
from datasets import Dataset
|
|
||||||
|
|
||||||
# Konfiguracja
|
model = AutoModelForSeq2SeqLM.from_pretrained("allegro/multislav-5lang")
|
||||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
tokenizer = AutoTokenizer.from_pretrained("allegro/multislav-5lang")
|
||||||
MODEL_NAME = "allegro/herbert-base-cased"
|
|
||||||
SPECIAL_TOKENS = ["[CITATION_START]", "[CITATION_END]"]
|
|
||||||
TEXT_FILE_PATH = "./docs/kodekspracy.txt" # Zmień na właściwą ścieżkę
|
|
||||||
|
|
||||||
def prepare_dataset_from_file(file_path):
|
model.save_pretrained("./models/ably")
|
||||||
with open(file_path, 'r', encoding='utf-8') as f:
|
tokenizer.save_pretrained("./models/ably")
|
||||||
text = f.read()
|
|
||||||
|
|
||||||
articles = re.findall(r'Art\.\s*\d+[a-z]*\..*?(?=\s*Art\.\s*\d+[a-z]*\.|\Z)', text, flags=re.DOTALL)
|
print("✅ Model został wytrenowany i zapisany!")
|
||||||
|
|
||||||
formatted_articles = []
|
|
||||||
for article in articles:
|
|
||||||
article = ' '.join(article.strip().split())
|
|
||||||
|
|
||||||
art_match = re.match(r'Art\.\s*(\d+[a-z]*)\.?\s*(.*)', article, re.DOTALL)
|
|
||||||
if art_match:
|
|
||||||
art_number = art_match.group(1)
|
|
||||||
art_text = art_match.group(2)
|
|
||||||
|
|
||||||
paragraphs = re.split(r'(§\s*\d+\.)', art_text)
|
|
||||||
if len(paragraphs) > 1:
|
|
||||||
formatted_paragraphs = []
|
|
||||||
for i in range(1, len(paragraphs), 2):
|
|
||||||
para_num = paragraphs[i].strip()
|
|
||||||
para_text = paragraphs[i+1].strip()
|
|
||||||
formatted_paragraphs.append(f"{para_num} {para_text}")
|
|
||||||
formatted = f"[CITATION_START] Kodeks Pracy, Art. {art_number} [CITATION_END]\n" + "\n".join(formatted_paragraphs)
|
|
||||||
else:
|
|
||||||
formatted = f"[CITATION_START] Kodeks Pracy, Art. {art_number} [CITATION_END] {art_text}"
|
|
||||||
|
|
||||||
formatted_articles.append({"text": formatted})
|
|
||||||
|
|
||||||
questions = [
|
|
||||||
f"Zacytuj artykuł {art_number} Kodeksu pracy.",
|
|
||||||
f"Co mówi artykuł {art_number} Kodeksu pracy?",
|
|
||||||
f"Podaj treść artykułu {art_number} Kodeksu pracy."
|
|
||||||
]
|
|
||||||
for question in questions:
|
|
||||||
formatted_articles.append({"text": f"{question}\n{formatted}"})
|
|
||||||
|
|
||||||
return formatted_articles
|
|
||||||
|
|
||||||
def main():
|
|
||||||
# Inicjalizacja tokenizera
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
|
||||||
tokenizer.pad_token = tokenizer.eos_token
|
|
||||||
tokenizer.add_special_tokens({"additional_special_tokens": SPECIAL_TOKENS})
|
|
||||||
|
|
||||||
print(f"Pad token: {tokenizer.pad_token}")
|
|
||||||
print(f"Pad token ID: {tokenizer.pad_token_id}")
|
|
||||||
|
|
||||||
# Przygotowanie danych
|
|
||||||
data = prepare_dataset_from_file(TEXT_FILE_PATH)
|
|
||||||
dataset = Dataset.from_dict({"text": [d["text"] for d in data]})
|
|
||||||
|
|
||||||
# Tokenizacja
|
|
||||||
def tokenize_function(examples):
|
|
||||||
tokenized = tokenizer(
|
|
||||||
examples["text"],
|
|
||||||
truncation=True,
|
|
||||||
padding="max_length",
|
|
||||||
max_length=512,
|
|
||||||
return_tensors="pt"
|
|
||||||
)
|
|
||||||
tokenized["labels"] = tokenized["input_ids"].clone()
|
|
||||||
return tokenized
|
|
||||||
|
|
||||||
tokenized_dataset = dataset.map(tokenize_function, batched=True, remove_columns=dataset.column_names)
|
|
||||||
|
|
||||||
# Model i data collator
|
|
||||||
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
|
||||||
model.resize_token_embeddings(len(tokenizer))
|
|
||||||
model.config.pad_token_id = tokenizer.pad_token_id
|
|
||||||
|
|
||||||
data_collator = DataCollatorForLanguageModeling(
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
mlm=False
|
|
||||||
)
|
|
||||||
|
|
||||||
# Konfiguracja treningu
|
|
||||||
training_args = TrainingArguments(
|
|
||||||
output_dir="./results",
|
|
||||||
num_train_epochs=32,
|
|
||||||
per_device_train_batch_size=2,
|
|
||||||
learning_rate=1e-5,
|
|
||||||
logging_steps=10,
|
|
||||||
weight_decay=0.01,
|
|
||||||
report_to="none",
|
|
||||||
save_strategy="steps",
|
|
||||||
save_steps=500,
|
|
||||||
evaluation_strategy="steps",
|
|
||||||
eval_steps=500,
|
|
||||||
load_best_model_at_end=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Trainer
|
|
||||||
trainer = Trainer(
|
|
||||||
model=model,
|
|
||||||
args=training_args,
|
|
||||||
train_dataset=tokenized_dataset,
|
|
||||||
eval_dataset=tokenized_dataset,
|
|
||||||
data_collator=data_collator
|
|
||||||
)
|
|
||||||
|
|
||||||
print("Rozpoczęcie treningu...")
|
|
||||||
trainer.train()
|
|
||||||
trainer.save_model("./trained_model/allegro")
|
|
||||||
tokenizer.save_pretrained("./trained_model/allegro")
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
||||||
|
|
@ -0,0 +1,12 @@
|
||||||
|
#!/bin/bash
|
||||||
|
git config --global credential.helper store
|
||||||
|
git config --global user.name ${GIT_USERNAME}
|
||||||
|
git config --global user.email ${GIT_EMAIL}
|
||||||
|
echo "https://${GIT_USERNAME}:${GIT_TOKEN}@${GIT_HOST}" > ~/.git-credentials
|
||||||
|
cd /home
|
||||||
|
git clone --single-branch --branch main/finetuning https://repo.pokash.pl/POKASH.PL/ably.do.git
|
||||||
|
python /app/${MODELNAME}.py
|
||||||
|
|
||||||
|
# Po zakończeniu głównego procesu, przejdź w tryb czuwania
|
||||||
|
echo "Główny proces zakończony. Przechodzę w tryb czuwania..."
|
||||||
|
tail -f /dev/null
|
||||||
|
|
@ -4,5 +4,13 @@ datasets>=2.13.1
|
||||||
Pillow>=9.4.0
|
Pillow>=9.4.0
|
||||||
pytesseract>=0.3.10
|
pytesseract>=0.3.10
|
||||||
python-docx>=0.8.11
|
python-docx>=0.8.11
|
||||||
PyPDF2>=3.0.1
|
pypdf
|
||||||
|
PyPDF2
|
||||||
huggingface-hub>=0.16.4
|
huggingface-hub>=0.16.4
|
||||||
|
numpy
|
||||||
|
peft
|
||||||
|
weaviate-client
|
||||||
|
sentence_transformers
|
||||||
|
faiss-gpu
|
||||||
|
sentencepiece
|
||||||
|
sacremoses
|
||||||
Loading…
Reference in New Issue