ably.do/gpt.py

118 lines
4.1 KiB
Python
Raw Normal View History

2025-02-25 18:19:51 -05:00
import os
2025-02-26 03:32:16 -05:00
import re
2025-02-25 18:19:51 -05:00
import torch
2025-02-25 18:26:35 -05:00
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForLanguageModeling
2025-02-25 18:19:51 -05:00
from datasets import Dataset
# Konfiguracja
os.environ["TOKENIZERS_PARALLELISM"] = "false"
2025-02-26 05:16:20 -05:00
MODEL_NAME = "gpt2-medium"
2025-02-25 18:19:51 -05:00
SPECIAL_TOKENS = ["[CITATION_START]", "[CITATION_END]"]
2025-02-26 03:35:57 -05:00
TEXT_FILE_PATH = "./docs/kodekspracy.txt" # Zmień na właściwą ścieżkę
2025-02-25 18:19:51 -05:00
2025-02-26 03:32:16 -05:00
def prepare_dataset_from_file(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
text = f.read()
# Wydziel artykuły za pomocą wyrażenia regularnego
2025-02-26 03:41:42 -05:00
articles = re.findall(r'Art\.\s*\d+[a-z]*\..*?(?=\s*Art\.\s*\d+[a-z]*\.|\Z)', text, flags=re.DOTALL)
2025-02-26 03:32:16 -05:00
formatted_articles = []
for article in articles:
# Usuń zbędne białe znaki
article = ' '.join(article.strip().split())
2025-02-26 03:41:42 -05:00
# Wydziel numer artykułu i treść
art_match = re.match(r'Art\.\s*(\d+[a-z]*)\.?\s*(.*)', article, re.DOTALL)
2025-02-26 03:32:16 -05:00
if art_match:
art_number = art_match.group(1)
art_text = art_match.group(2)
2025-02-26 03:41:42 -05:00
# Podziel na paragrafy, jeśli istnieją
paragraphs = re.split(r'\s*\d+\.)', art_text)
if len(paragraphs) > 1:
formatted_paragraphs = []
for i in range(1, len(paragraphs), 2):
para_num = paragraphs[i].strip()
para_text = paragraphs[i+1].strip()
formatted_paragraphs.append(f"{para_num} {para_text}")
formatted = f"[CITATION_START] Kodeks Pracy, Art. {art_number} [CITATION_END]\n" + "\n".join(formatted_paragraphs)
else:
formatted = f"[CITATION_START] Kodeks Pracy, Art. {art_number} [CITATION_END] {art_text}"
2025-02-26 03:32:16 -05:00
formatted_articles.append({"text": formatted})
2025-02-26 05:16:20 -05:00
# Dodaj przykłady pytań i odpowiedzi
questions = [
f"Zacytuj artykuł {art_number} Kodeksu pracy.",
f"Co mówi artykuł {art_number} Kodeksu pracy?",
f"Podaj treść artykułu {art_number} Kodeksu pracy."
]
for question in questions:
formatted_articles.append({"text": f"{question}\n{formatted}"})
2025-02-26 03:32:16 -05:00
return formatted_articles
2025-02-25 18:19:51 -05:00
2025-02-26 04:35:35 -05:00
2025-02-25 18:19:51 -05:00
def main():
2025-02-25 18:22:03 -05:00
# Inicjalizacja tokenizera
2025-02-25 18:30:01 -05:00
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
2025-02-25 18:19:51 -05:00
tokenizer.add_special_tokens({"additional_special_tokens": SPECIAL_TOKENS})
tokenizer.pad_token = tokenizer.eos_token
# Przygotowanie danych
2025-02-26 03:32:16 -05:00
data = prepare_dataset_from_file(TEXT_FILE_PATH)
2025-02-25 18:22:03 -05:00
dataset = Dataset.from_dict({"text": [d["text"] for d in data]})
2025-02-25 18:19:51 -05:00
2025-02-26 03:32:16 -05:00
# Tokenizacja
2025-02-25 18:19:51 -05:00
def tokenize_function(examples):
2025-02-25 18:26:35 -05:00
tokenized = tokenizer(
2025-02-25 18:19:51 -05:00
examples["text"],
truncation=True,
padding="max_length",
2025-02-26 04:36:09 -05:00
max_length=1024, # Zwiększono dla dłuższych artykułów
2025-02-25 18:19:51 -05:00
return_tensors="pt"
)
2025-02-25 18:26:35 -05:00
tokenized["labels"] = tokenized["input_ids"].clone()
return tokenized
2025-02-25 18:19:51 -05:00
2025-02-26 04:35:35 -05:00
tokenized_dataset = dataset.map(tokenize_function, batched=True)
2025-02-25 18:19:51 -05:00
2025-02-25 18:26:35 -05:00
# Model i data collator
2025-02-25 18:32:41 -05:00
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
2025-02-26 04:35:35 -05:00
model.resize_token_embeddings(len(tokenizer), mean_resizing=False)
2025-02-25 18:26:35 -05:00
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False
)
2025-02-25 18:19:51 -05:00
# Konfiguracja treningu
training_args = TrainingArguments(
2025-02-26 05:17:48 -05:00
output_dir="./results",
2025-02-26 05:19:33 -05:00
num_train_epochs=32, # Zwiększono liczbę epok
2025-02-26 05:17:48 -05:00
per_device_train_batch_size=2,
2025-02-26 05:19:33 -05:00
learning_rate=1e-5, #precyzja uczenia
2025-02-26 05:17:48 -05:00
logging_steps=10,
2025-02-26 05:19:33 -05:00
weight_decay=0.01,
2025-02-26 05:17:48 -05:00
report_to="none",
2025-02-26 05:19:33 -05:00
save_strategy="no",
load_best_model_at_end=True, # Ładowanie najlepszego modelu na końcu
2025-02-26 05:17:48 -05:00
)
2025-02-26 05:16:20 -05:00
2025-02-25 18:19:51 -05:00
# Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset,
2025-02-25 18:26:35 -05:00
data_collator=data_collator
2025-02-25 18:19:51 -05:00
)
print("Rozpoczęcie treningu...")
trainer.train()
2025-02-26 03:49:28 -05:00
trainer.save_model("./trained_model/gpt")
2025-02-26 04:06:04 -05:00
tokenizer.save_pretrained("./trained_model/gpt")
2025-02-25 18:19:51 -05:00
if __name__ == "__main__":
2025-02-26 04:35:35 -05:00
main()